A data science pipeline synchronization method for edge-fog-cloud continuum

Dante D. Sanchez-Gallegos, J. L. Gonzalez-Compean, Jesus Carretero, Heidy Marin-Castro

jcarrete@inf.uc3m.es

The 18th Workshop on Workflows in Support of Large-Scale Science (WORKS23)
Many eScience problems require very complex and data intensive cooperation among multidisciplinary actors.

To cope with this, workflow managers usually create dataflow processing schemes on the cloud or HPC centers.

Motivation

Common issues when centralizing the management of data

- Data confidentiality
- Vendor lock-in
- Loss of control
- Data accessibility during outages
- Latency to store and access data
Multi-tier serverless architectures

- Multi-tier serverless architectures allows to create a geographically distributed data service.
 - Deployed dynamically following applications needs

- Challenges:
 - **Latency** between infrastructures.
 - Storage **Capacity** (persistent, volatile)
 - **Synchronization** and global availability of data.
 - To manage the **input/output operations**.
 - Enforcing **Non-Functional Requirements** for the data.

A data science pipeline synchronisation
MeshStore: General architecture

- Deployment of systems on the computing continuum.
- Automatic orchestration of data and tasks.
- Continuous monitoring of tasks.
- Implicit parallelism.
- Automatic management of data storage operations.
- Auto-scaling to mitigate bottlenecks.
- Added as a transversal layer to computing continuum systems.
- **Endpoints**: personal computers, servers, clusters, cloud instances, virtual machines, and virtual containers.
Control plane: diagnostic model to identify bottlenecks

- The performance of a system is modeled based on a Bernoulli principle metaphor.
- We mapped the following variables and elements:
 - Dataflow = a flow in a streamline
 - Throughput = velocity of a fluid
 - Pressure = input workload stored in the input buffer
 - The fastest stages = low pressure points
 - The slowest stages = high pressure points.
- Stages are classified according to their throughput.
Control plane: continuous monitoring and rectification scheme

- The throughput, response time, and input buffer utilization of the stages are monitored using entities called **sentinels**.
- The metrics are delivered to a watchman entity.
 - Identifies the bottleneck based on their throughput.
 - \(\text{Bottleneck} = \min(th_i) \) \(i \cdots n \)
 - \(th = \) throughput
- The watchman and sentinels are added as a transversal layer to the stages.
Control plane: rectification scheme to solve bottlenecks

- Bottlenecks are mitigated using a manager/worker parallel pattern.
- The number of workers is obtained from the response time of the bottleneck and a metric called takt time.
 - \(\text{workers} = \min \left(\frac{RT_{B(t)}}{T_{kt}}, N_{\text{cores}} \right), \)
 - The maximum number of workers is limited to the number of cores in the machine.
 - Takt time: maximum service time required to process an objective demand.
 - \(T_{kt} = \frac{MRT}{|\text{inBuff}|} \)
 - MRT = median response time of the stages near in performance to the bottleneck.
 - inBuff = size of the bottleneck’s input buffer.
Data plane: moving data through the computing continuum

- Applications use put and get operations to access to data in the data plane.
- Data plane:
 - Managed as a mesh.
 - Composed of storage containers.
 - Interfaces:
 - Filesystem
 - Memory
 - Network
- Creates a content delivery network that connects multiple infrastructures.

PR: Physical resources VR: Virtual resources
Data plane: storage scheme

- The allocation/location of data is based on a balls-into-bins metaphor.

- The data placement (allocation) is based on a two choices load-balancing algorithm with an utilization factor \((UF_i)\).
 - \(SC_j = \min(UF_i) = 1 - \left(\frac{C_i - UI_i}{C}\right)\)
 - \(UI_i = SC_i \) usage
 - \(C = \sum C_{ij}, i = 1...n\)
 - \(C_i = SC_i \) capacity

- Metadata maps are generated for each content \((m_i)\) to be stored in a storage container.
 - Location, NFR, ...

\[SC = \min(UF_i) m_i = m_i \cup SC\]
Experimental evaluation

• Evaluation performed using synthetic data and real meteorological traces.

• Evaluated using simultaneously distributed infrastructure available at Mexico, Spain, and Amazon AWS.
 • Mexico. 1 edge, 3 fog.
 • Spain. 1 edge, 2 fog.
 • AWS. Shared storage instance.

• A storage mesh was created using that infrastructure.
Comparing uploading/downloading operations with commercial tools

- We evaluate the time to share 100 files of 1, 10, and 100 MB from the Tamaulipas, Mexico to Madrid, Spain.
 - Comparison between Google Drive, Dropbox, and MeshStore.
 - We connected MeshStore to storage containers deployed on AWS.

Data uploading from Mexico to the cloud.
Data downloading from the cloud to Madrid.
Data movement evaluation

- Point-to-point transmission of data from a computer in the UC3M (Madrid) to a virtual machine in Amazon EC2 (US East - N. Virginia).
 - **ProxyStore**\(^1\) to transfer data on inter-site environments (Point to Point data transmission).
 - **MeshStore-direct**: a direct transmission of the data (Point to Point data transmission).
 - **MeshStore-storage**: including the storage of the data for their long-time preservation on storage containers (serverless).

![Graphs showing performance comparison between MS-storage, ProxyStore, and MS-direct for upload and download operations.](image)

Case study: management of medical data

- System deployed on fog and EC2 infrastructures.
 - Data source 1: 9533 tomography images with a total size of 4.7 GB.
 - Data source 2: 1000 CSV files (57.3 MB) generated with a vital sign simulator.
Case study: management of medical images

- The method achieves a speed-up of 3.94x and 3.74x on the stages identified as bottlenecks.
- The maximum number of workers is 24, which is equal to the number of cores on the infrastructure.
- The improvement of the performance of bottlenecks has a direct impact on the performance of the fastest stage (Ciphering), as it can process more data per second.
• **Parsl-24w** and **Nextflow-24w**: using all available resources without managing bottlenecks.

• **Parsl-SC** and **Nextflow-SC**: using the steady configuration obtained by our method.

• Our method reduces the response time of 43.14% and 43.46% in comparison with Parsl and Nextflow, respectively.
Case study for the management of meteorological data

- We evaluate the performance of the data management workflow by scaling the number of available workers.
- For each stage in the workflow, we executed 15817 functions (one for each file in the MERRA-2 dataset).
- Execution time for one worker is 805.07 minutes. For 8 workers, 119.79 minutes.
Case study for the management of meteorological data

- Evaluation of a solution using bash scripts to execute the functions and SSH to move the data from the edge to the fog.
 - It requires the complex management of SSH credentials and the installation of the functions and their dependencies in the available infrastructure.
- The spatial variables are for the Yucatan peninsula in Mexico, whereas the temporal variables were limited to 2016.
Conclusions

• MeshStore is based on storage structures that represent maps of storage resources available on multiple infrastructures.
• Automatically manages the data required and produced by serverless functions.
• Automatically identifies bottlenecks on computing continuum systems.
• Creates a representation of the state of functions and applications based on the Bernoulli equation.
• A unified storage layer is added in a transversal manner to serverless functions.

Ongoing work

• Integration of MeshStore with a blockchain model to keep the traceability of the data and exploitation through smart contracts.
• Study of self-adaptable mechanisms to choose the number of workers and virtual containers in a storage mesh.
• Enhancing data distribution by alleviating I/O bottlenecks.
• Using ad-hoc storage deployments per workflow to enhance I/O in HPC systems
A data science pipeline synchronization method for edge-fog-cloud continuum

Dante D. Sanchez-Gallegos, J. L. Gonzalez-Compean, Jesus Carretero, Heidy Marin-Castro

jcarrete@inf.uc3m.es

The 18th Workshop on Workflows in Support of Large-Scale Science (WORKS23)