2 SC23

Denver, CO | i am hpc.

TaskVine: Managing In-Cluster Storage for
High-Throughput Data-Intensive Workflows

Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew Hennesee, Ben Tovar,
Douglas Thain

University of Notre Dame

P,
CCTools
TaskVine Overview - —

TaskVine is a workflow executor for data intensive workflows that
carefully manages data dependencies and resource utilization by
utilizing in-cluster storage and bandwidth

TaskVine ﬂ

TaskVine Architecture Overview

Application

The TaskVine manager directs
workers to read data from remote
sources, run tasks on that data, and
share data with each other.

TaskVine leaves data on workers
in the cluster wherever possible!

CCTools

TaskVine
Worker o

TaskVine
Worker __.

Compute Cluster

TaskVine
Worker

>

TaskVine
Worker mt

Remote
Services

Evaluation: Managing Transfers

CCTools

Experiment: Introducing remote data into cluster. Left: each task independently downloads file. Middle:
Uncontrolled peer transfers between workers. Right: Limited peer transfers between workers.

500

400

300

tasks

200

100

0 20 40 60

time(s)

80

100

tasks

500

400

300

200

100

0] 20

40
time(s)

Limiting peertransfer concurrency improves performance.

60

80

100

tasks

500

400

300

200

100

N

Bl tasks executing
B results waiting retrieval
e worker transfers

20

40

time(s)

60

80

100

. _

CCTools

TaskVine Program

Task Definitions:
Three paradigms can be combined:

= Dynamic Workflow: submit multiple tasks, wait
for completion, consider results, submit more.

= Static Workflow: define entire workflow up
front, wait for complete results to be returned. Data Definitions:

Regular Task
Python Task
Mini Task
Serverless Task

= Serverless Computing: define functions as LocalFile
services, then submit lightweight invocations of . TempFile
those services. BufferFile

« URLFile

Mini Task*

CCTools

Regular Task Definition

taskvine as vine

vine.Manager(9123)

doc = m.declareURL("https://www.gutenberg.org/files/1960/1960.txt")

task = vine.Task("grep chair doc.txt")
task.add_input(doc, "doc.txt")

sandbox

taskid = m.submit(task)
task = queue.wait(VINE_FOREVER)

print task.output

| y CCTools
TaskVine Application _———

blast_url="https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LA
TEST/ncbi-blast-2.13.0+-x64-1inux.tar.gz"

untar untar

landmark_url "https://ftp.ncbi.nlm.nih.gov/blast/db/landmark.tar.gz"
query_string "GCTAATCCA.."

software = m.declareUntar(m.declareURL(blast_url))
landmark = m.declareUntar(m.declareURL(landmark_url))

task = vine.Task("blastp -db landmark -query query.file")
task.add_input(software, "blastdir")
task.add_input(database, "landmark")
task.add_input_buffer(query_string, "query.file")
task.set_env_var("BLASTDB", value="landmark")

sandbox

m.submit(task)

CCTools

] [
XRootD
Server
New capabilities are added to the system by defining
mini-tasks that use the same task infrastructure to
define dependencies and execute them reproducibly:
data = m.declareXRootD("xrootd://host/path", "proxy") il »
X509 _USER_PROXY=... _8
2
Which is defined as a mini-task like this: o
= vine.Task("xrdcp {} output.root".format(url));
t.add_input(proxy, "proxy509.pem")

t.set_env_var("X509_USER_PROXY", "proxy569.pem")
data = m.declareMiniTask(t, "output.root") FileXRootD

. _

CCTools

Evaluation: Mini Tasks

Experiment:Mini Tasks enable tasks to share staged data, even when it requires some transformation following
transfer. Left: Each task expands the environment itself as part of its own task definition. Right: Each task
shares an expanded environment defined by a shared mini-task.

1000 1000
800 800
v 600 ., 600
7 Xz
[72) (V)]
© ©
* 400 * 400
Bl tasks executing
200 200 B results waiting retrieval
. 1 . worker transfers
0 2 4 6 8 0 2 4 6 8

time(m) time(m)

Environments can be staged and re-used among tasks

TaskVine Implementation

® Environment
Management

e Storage Management
and Naming

e Transfer Management

e Serverless Computing

CCTools

TaskVine Worker

data.tar.gz

output.txt

Task 1 Sandbox

Task 2 Sandbox

10

Consistent Naming

Files have one of three lifetimes:
e single-task

e workflow (default)

e forever

"forever" cached objects are given
content addressable names from a
Merkle Tree of the file's provenance.
If any inputs change, then so does the
name of the output, and it's not the
same file.

Checksum(Content-of-S)

= 53ba27f

Checksum(

}
) = ¢c320b61

o

. —

"cmd":"blast",

"inputs" = {
"S" : Checksum(S),
"D": Checksum(D))

Checksum(

= f06da39

"task" : Checksum(Task-5)
"Output": llel

CCTools

11

. _

Evaluation: Caching Through Consistent CCIOOI_S

Naming

Experiment: Execution a workflow from a worker’s perspective. During a cold start, there is substantial overhead
due to transferring and staging data. This overhead is removed on subsequent runs.

320 ———————— 320
prE— o, 240
&) ... &R ———— Cld
(@) = — — (@] e
©1601 = Yl60EBE———————

_—— @ = B tasks executing
sa-— 80E=—— B results waiting retrieval
e ———————— ——————————— ——— 0 ww worker transfers
0] 40 80 120 160 0 40 80 120 160
time(s) time(s)

NOTE: consistent naming for various data types make caching possible across workflows! 12

Serverless Execution

Define ordinary Python functions
def my_sum(x, y):
return x+y

def my_mul(x, y):
return x*y

Create a library object from functions
= m.create_library from functions(
"my_library", my sum, my mul)

Install the library on all workers.
.install library(L)

= FunctionCall(‘my_library’, ‘my mul’, 2, 17)
.submit(f)

5/3/23

Application

TaskVine Mgr

TaskVine Worker

CCTools

software

logfile.txt

Library Instance Function Instance

13

. -

CCTools

TaskVine Integration: Parsl

import parsl
from parsl import python_app
from parsl.configs.vineex local import config

TaskVine Pk

parsl.load(config)

@python_app
def double(x):

return x*2

future = double(1)
assert future.result() ==

. -

CCTools

TaskVine Integration: Dask

import ndcctools.taskvine as vine
import dask
import dask.array as da

Dask Task Graph . .
d={x:1, # Create a new manager listening on port 9123

'y (inc, 'X"),

Z: (add, 'y, 10)} manager = vine.DaskVine(9123)
X = da.random.random((10000,10000), chunks=5000)
y X + X.T
z = y[::2,500:].mean(axis=1)

result = z.compute(manager.get())

print(result);

. _

CCTools

T JUNIVERSITY OF
NOTRE DAME

This work was supported by

e TaskVine is a component of the Cooperative Computing

Tools (cctools) from Notre Dame alongside Makeflow, b " NSF Award OAG. 1931348
Work Queue, Resource Monitor, etc.
e Latest release in October 2023. R P

CCL | Software | Install | Manuals | Forum | Papers

bslydelg@nd.edu .5
https://cctools.readthedocs.io oo ® TaskVine

https://ccl.cse.nd.edu/software/taskvine

TaskVine is a framework for building large scale data intensive dynamic workflows that run on HPC clusters, GPU
clusters, and commercial clouds. As tasks access external data sources and produce their own outputs, more and more
data is pulled into local storage on workers. This data is used to accelerate future tasks and avoid re-computing exisiting
results. Data gradually grows "like a vine" through the cluster. TaskVine is our third-generation workflow system, built
on our twenty years of experience creating scalable applications in fields such as high energy physics, bioinformatics,

molecular dynamics, and machine learning.
Install TaskVine

’ o~ . - :
Douglas Thain Benjamin Tovar Thanh Son Phung Barry Sly Delgado Colin Thomas Quick User Overview
Director Research Ph.D. Student Ph.D. Student Ph.D. Student .
Soft. Engineer Start Manual Slides
4 TSy conda install -c conda-forge ndcctools 16
David Simonetti Joe Duggan Andrew Hennessee Matt Carbonaro Jachob Dolak

Undergraduate Undergraduate Undergraduate Undergraduate Undergraduate

https://ccl.cse.nd.edu/software/taskvine
https://cctools.readthedocs.io

