
TaskVine: Managing In-Cluster Storage for
High-Throughput Data-Intensive Workflows
Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew Hennesee, Ben Tovar,
Douglas Thain
University of Notre Dame

11/13/23 1

TaskVine Overview

TaskVine is a workflow executor for data intensive workflows that
carefully manages data dependencies and resource utilization by
utilizing in-cluster storage and bandwidth

2

TaskVine Architecture Overview

Compute Cluster

Application

TaskVine Mgr

tasks results

Remote
Services

Shared
Filesystem

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

Files
Files

Files

Data

S/W

Other
App

Other
App

The TaskVine manager directs
workers to read data from remote
sources, run tasks on that data, and
share data with each other.

TaskVine leaves data on workers
in the cluster wherever possible!

3

Evaluation: Managing Transfers

4

Experiment: Introducing remote data into cluster. Left: each task independently downloads file. Middle:
Uncontrolled peer transfers between workers. Right: Limited peer transfers between workers.

Limiting peertransfer concurrency improves performance.

TaskVine Program

Three paradigms can be combined:
▰ Dynamic Workflow: submit multiple tasks, wait

for completion, consider results, submit more.
▰ Static Workflow: define entire workflow up

front, wait for complete results to be returned.
▰ Serverless Computing: define functions as

services, then submit lightweight invocations of
those services.

Task Definitions:
• Regular Task
• Python Task
• Mini Task
• Serverless Task

Data Definitions:
• LocalFile
• TempFile
• BufferFile
• URLFile
• Mini Task*

5

Regular Task Definition

sa
nd

bo
x

import taskvine as vine

m = vine.Manager(9123)

doc = m.declareURL("https://www.gutenberg.org/files/1960/1960.txt")

task = vine.Task("grep chair doc.txt")
task.add_input(doc,"doc.txt")

taskid = m.submit(task)
task = queue.wait(VINE_FOREVER)

print task.output

doc.txt

grep

WWW

stdout

6

TaskVine Application

sa
nd

bo
x

blast.tar.gz landmark.tar.gz

blast/ landmark/

blastp

NCBI

query

stdout

ENV

untar untar

blast_url="https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LA
TEST/ncbi-blast-2.13.0+-x64-linux.tar.gz"

landmark_url = "https://ftp.ncbi.nlm.nih.gov/blast/db/landmark.tar.gz"

query_string = "GCTAATCCA…"

software = m.declareUntar(m.declareURL(blast_url))
landmark = m.declareUntar(m.declareURL(landmark_url))

task = vine.Task("blastp -db landmark -query query.file")
task.add_input(software,"blastdir")
task.add_input(database,"landmark")
task.add_input_buffer(query_string, "query.file")
task.set_env_var("BLASTDB", value="landmark")

m.submit(task)

7

Mini-Tasks

sa
nd

bo
xxrdcp

output.root

data = m.declareXRootD("xrootd://host/path", "proxy")

FileXRootD

XRootD
Server

proxy509.pem

proxy

X509_USER_PROXY=...

data

New capabilities are added to the system by defining
mini-tasks that use the same task infrastructure to
define dependencies and execute them reproducibly:

Which is defined as a mini-task like this:

t = vine.Task("xrdcp {} output.root".format(url));
t.add_input(proxy,"proxy509.pem")
t.set_env_var("X509_USER_PROXY","proxy509.pem")
data = m.declareMiniTask(t,"output.root")

8

Evaluation: Mini Tasks

9

Experiment:Mini Tasks enable tasks to share staged data, even when it requires some transformation following
transfer. Left: Each task expands the environment itself as part of its own task definition. Right: Each task
shares an expanded environment defined by a shared mini-task.

Environments can be staged and re-used among tasks

● Environment
Management

● Storage Management
and Naming

● Transfer Management
● Serverless Computing

TaskVine Implementation

TaskVine Worker

url
sd698d

url
wq73dv

temp
xyz123

file
su3g2n

file
r223cdf

T1

data.tar.gz

output.txt

T2

configinput.txt

output.txt

Task 1 Sandbox Task 2 Sandbox 10

Consistent Naming

Files have one of three lifetimes:
● single-task
● workflow (default)
● forever

"forever" cached objects are given
content addressable names from a
Merkle Tree of the file's provenance.
If any inputs change, then so does the
name of the output, and it's not the
same file.

S

S

D

5

S

D

5 X

Checksum(Content-of-S)
= 53ba27f

Checksum()

= f06da39

"cmd":"blast",
"inputs" = {
 "S" : Checksum(S),
 "D": Checksum(D)
}

Checksum()

= c320b61

"task" : Checksum(Task-5)
"output": "X"

11

Evaluation: Caching Through Consistent
Naming

12

Experiment: Execution a workflow from a worker’s perspective. During a cold start, there is substantial overhead
due to transferring and staging data. This overhead is removed on subsequent runs.

NOTE: consistent naming for various data types make caching possible across workflows!

Serverless Execution

5/3/23

TaskVine Worker

url
8p3qe2

file
su3g2n

L

software

Library Instance

F

Function Instance

logfile.txt result

fork

data

Define ordinary Python functions
def my_sum(x, y):
 return x+y

def my_mul(x, y):
 return x*y

Create a library object from functions
L = m.create_library_from_functions(
 "my_library", my_sum, my_mul)

Install the library on all workers.
m.install_library(L)

f = FunctionCall(‘my_library’, ‘my_mul’, 2, 17)
m.submit(f)

13

Application

TaskVine Mgr

software args data

args

TaskVine Integration: Parsl

import parsl
from parsl import python_app
from parsl.configs.vineex_local import config

parsl.load(config)

@python_app
def double(x):

return x*2

future = double(1)
assert future.result() == 2

14

TaskVine Integration: Dask

Dask Task Graph
d = {'x': 1,
 'y': (inc, 'x'),

 'z': (add, 'y', 10)}

import ndcctools.taskvine as vine
import dask
import dask.array as da

Create a new manager listening on port 9123
manager = vine.DaskVine(9123)

x = da.random.random((10000,10000),chunks=5000)
y = x + x.T
z = y[::2,500:].mean(axis=1)

result = z.compute(manager.get())

print(result);
15

Thanks!

https://ccl.cse.nd.edu/software/taskvine

This work was supported by
NSF Award OAC-1931348

16

https://cctools.readthedocs.io

conda install -c conda-forge ndcctools

● TaskVine is a component of the Cooperative Computing
Tools (cctools) from Notre Dame alongside Makeflow,
Work Queue, Resource Monitor, etc.

● Latest release in October 2023.

bslydelg@nd.edu

https://ccl.cse.nd.edu/software/taskvine
https://cctools.readthedocs.io

