
1
LLNL-PRES-844974

LLNL-PRES-844974
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Fluxion: A Scalable Graph-Based Resource Model
for HPC Scheduling Challenges

WORKS Workshop, SC’23

Nov 13, 2023

https://github.com/flux-framework/flux-sched

Tapasya Patki, Dong Ahn*, Daniel Milroy, Jae-Seung Yeom,
Jim Garlick, Stephen Herbein*, Tom Scogland

NVIDIA Corporation*

https://github.com/flux-framework/flux-sched

3
LLNL-PRES-844974

Sierra pre-exascale system is a wakeup call (MuMMI).

Single Macro Simulation
C++ (with MPI); MOOSE; ddcMD
24 CPU cores/node; 2400 MPI tasks
242 GB per day

ML-based Selection
Python; ML frameworks; FAISS
24 CPU cores
>1000 decisions per minute

CG Setup
Python; Custom; GROMACS
24 CPU cores each 1.5 hr each

…
FIFO; real-time tracking & update

CG Simulation
C++ (with CUDA); ddcMD
1 GPU + 1 CPU core each
1.04 µs and ~6.5 GB per day

In situ CG Analysis
Python; Custom
3 CPU cores each
>2K frames per day

…

Analysis Aggreg. & Feedback
Python; Custom
24 CPU cores
120,000 reads per cycle

!	

4
LLNL-PRES-844974

Trends towards complex workflows, extreme resource heterogeneity,
and converged computing render traditional workload managers
increasingly ineffective.

New pillar

Co-scheduling

Job throughput

Job communication/coordination

Portability

Extremely heterogenous resources

5
LLNL-PRES-844974

The changes in resource types are equally challenging.

§ Problems are not just confined to the
workload/workflow challenge.

§ Resource types and their relationships are
also becoming increasingly complex.

§ Much beyond compute nodes and cores
requiring partial occupancy and accounting...
— GPGPUs, Burst buffers
— I/O and network bandwidth, Power management
— Variation

§ Converged computing and disaggregated
system designs require support for elasticity
and dynamism

PFS BW Capacity

6
LLNL-PRES-844974

§ Resource Models: Internal representations and data structures used for
managing resources (e.g. nodes, cores, memory, power)

§ Node- or core-centric models are typical
— Designed over 20 years ago when heterogeneity was uncommon, and memory was

limited

§ Pros: scheduling overhead and space complexity is low

§ Cons:
— Cannot represent resource relationships beyond physical hierarchy
— Partial occupancy or level of detail for flow resources cannot be specified easily
— Do not have a notion of containment or subsystems, e.g. allocating across a power or

I/O subsystem hierarchy simultaneously
— Do not support dynamic updates to resource pools

The traditional resource data models are largely
ineffective to cope with these resource challenges.

7
LLNL-PRES-844974

Incremental improvements are insufficient to address this
gap for supporting advanced use cases.

§ Approaches such as GRES plugins (SLURM)
or custom resources (PBSPro) exist, but are
still node-centric and cannot express
complex resource relationships

§ Scalability and management can become
unwieldy
— Every new resource type requires new a user-

defined type
— A new relationship requires a complex set of

pointers cross-referencing different types.
— Dynamic updating of resources is not supported
— Cannot allocate through diverse hierarchies or

resource pools simultaneously

Examples:
• SLURM: bitmaps to represent a set of

compute nodes, and GRES plugins for
custom resources

• PBSPro: linked-list of nodes with custom
resource definitions

8
LLNL-PRES-844974

A graph-based resource model supports five key
properties that address these challenges.

• Universality and Expressibility: Ability to model arbitrary and diverse resource
types along with the various relationships between them

• Flexibility: Ability to support scheduling points at different levels of detail (eg.
core, GPU, network bandwidth, power)

• Scalability: Ability to scale well and leverage parallelism across diverse setups,
ranging from containers, to clouds, to supercomputers.

• Separations of Concerns: Ability to construct the resource model separately from
the scheduling policy, allowing for support for scheduling policy customizations.

• Elasticity: Ability to update internal representations and data structures
dynamically, to support moldability, malleability and variable capacity.

9
LLNL-PRES-844974

Fluxion pioneers and uses graph-based scheduling to manage
complex combinations of extremely heterogenous resources.

§ Elevate resource relationships (edges) to an equal footing
with resources (vertices)

§ Resource Pool: group of indistinguishable resources (e.g.
cores), can be viewed as coarse or fine grained

§ Graph:
— Vertex represents a resource pool
— Edge has a type and subsystem attached

Containment subsystem Network subsystem Containment and I/O subsystems

10
LLNL-PRES-844974

RM (Flux, k2s …)

SDFU

Queuing Policy Match Policy

(3) (2)

(1) (4)

(5)

(7) Tr
av

er
se

r
Ty

pe

LOD-configurable graph

Emit

Match

(6) Planner &
Pruning Filter

t1 t2 t6

End-to-end scheduling flow with Fluxion

• In-memory resource graph store is populated with
available resources (shown in Step 2), along with the
level of detail and traversal type (e.g. depth-first)

• User’s request is obtained as a request graph (Step 3)

• Matching policy (Step 4) callback is invoked on visit
events (e.g. pre-order or post-order), and includes a
scoring mechanism for ranking matches

• Planner allows for resource time tracking (like a
calendar)

• Pruning filters and Scheduler Driven Filter Updates
(SDFU) allow for better scalability

Fluxion’s graph-based resource model
can integrate with many resource
managers, such as Flux and Kubernetes

11
LLNL-PRES-844974

§ Resource pools combined with subsystems enable
different granularities of scheduling easily
— E.g., select whether scheduling occurs at the node-

level, rack-level, gpu-level or storage-node-level

§ Coarse granularity
— Higher performance
— Pool together resources of the same type as a single

vertex

§ Finer granularity
— Promote subdivisions of resources to their own vertex

§ Graph filtering allows for selecting relevant
subsystems in complex schedulers with multiple
subsystems (e.g. containment and power)

Fluxion uses Level of Detail (LOD) control to improve
expressibility and scalability of graph models.

12
LLNL-PRES-844974

Fluxion’s graph-oriented canonical job-spec allows for a
highly expressive user resource requests specification.

§ Graph-oriented resource requests
— Express the resource requirements of a program to the scheduler
— Express program attributes such as arguments, run time, and task

layout, to be considered by the execution service

§ cluster->racks[2]->slot[3]->node[1]->sockets[2]->core[18]

§ slot is the only non-physical resource type
— Represent a schedulable place where program process or

processes will be spawned and contained

§ Referenced from the tasks section

13
LLNL-PRES-844974

Fluxion maps complex scheduling problems into graph
matching problems and allows for ranking between options.

Traverse, match and score

14
LLNL-PRES-844974

Fluxion uses graph filtering and pruning to manage the
graph complexity and optimize graph search.
§ The total graph can be quite complex

— Two techniques to manage the graph complexity
and scalability

§ Filtering reduces graph complexity
— The graph model needs to support schedulers

with different complexity
— Provide a mechanism by which to filter the graph

based on what subsystems to use

§ Pruned search increases scalability
— Fast RB tree-based planner is used to implement

a pruning filter per each vertex.
— Pruning filter keeps track of summary information

(e.g., aggregates) about subtree resources.
— Scheduler-driven pruning filter update

Filtering

Containment+Network Containment

Pruning

Prune filter
tracks available
node count in
aggregate at the
subtree

15
LLNL-PRES-844974

0

0.05

0.1

0.15

0.2

0.25

High High Prune Med Med Prune Low Low Prune Low2
Prune

SE
C

Scalability Results: Level of Detail along with Pruning

Evaluate a 1008 compute node system with four levels of detail:
• High LOD:

• 56 compute racks, 18 nodes, with 2 sockets.
• 20 cores, 2 GPUs, 8 memory (16GB each), 8 burst-buffers (BB)

(100 GB) per socket
• Med LOD:

• Same system, but remove socket-level detail
• 40 cores, 4 GPUs, 8 memory (32 GB) and 8 BB (200 GB) per

node
• Low LOD:

• Remove rack-level vertices
• Create a new core-pool of 5 cores each, 4 memory (64 GB) and

4 BB (400 GB) per node
• Low2 LOD:

• Similar to Low, but doesn’t remove rack vertices

• Job request:
• 10 cores, 8 GB memory, 1 BB
• Repeat until system is fully allocated

Time taken for matching all job requests with
varying LOD, and with and without pruning

16
LLNL-PRES-844974

Scalability Results: Planner scalability

• Evaluate with 128 units of an unnamed resource with
maximum time of 12 hours.

• Up to 1 million prepopulated spans with <r,d>
(resource amount, duration) drawn from a uniform
distribution of (1,128) and (1s, 43200s)

• SatAt:
• How quickly can a new request R with increasing

amounts of r and unit duration be satisfied at a random
time t?

• SatDuring:
• How quickly can a new request R with increasing

amounts of both r and d be satisfied at a random time t?
• EarliestAt:

• How quickly can we find the earliest fit for a new request
R with increasing amounts of r ?

Planner performance with different span
counts and query types

17
LLNL-PRES-844974

Use Case 1: The Fluence (FKA KubeFlux) plugin brings HPC-
grade scheduling and improved performance to Kubernetes.

K8s Scheduling Framework plugin based
on Fluxion scheduler.

Architectural change from monolithic to
gRPC-based
§ Improves maintainability, separation of

concerns

More placement control and functionality
§ Gang scheduling
§ GPU support
§ Topology awareness of Availability Zones

(AZs)

image: https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

Easier deployment
§ Automation through Helm
§ Export of Golang modules for easier

distribution

18
LLNL-PRES-844974

Use Case 2: Tiered Storage in HPC with Rabbits

5x
12x

64x

13x

Source: Lucy Nowell (DOE)

19
LLNL-PRES-844974

Burst Buffer Architectures

CN CN CN

CN CN CN

CN CN CN

SSD SSD

Parallel File System

IB

ION

SSD

SSD SSD SSD

SSD SSD SSD

CN CN CN

CN CN CN

CN CN CN

Parallel File System

BB
SSD

BB
SSD

IB

ION

SSD SSD
SSD SSD

Remote, shared BBNode-local BB Filesystem BB

CN CN CN

CN CN CN

CN CN CN

IB

ION

Parallel File System
SSD SSD SSD SSD SSD

21
LLNL-PRES-844974

Example of Tiered Storage Request

BB
SSD

BB
SSD

SSD SSD
SSD SSD

CN CN CN

CN CN CN

CN CN CN

SSD SSD

IB

ION

SSD

SSD SSD SSD

SSD SSD SSD

resources:
- type: node

count: 9
with:

- type: slot
count: 1
label: default
with:

- type: core
count: 2

- type: storage
count: 1
unit: terabytes
label: node-local-scratch

- type: storage
count: 4
unit: terabytes
label: PFS-cache

attributes:
storage:

- label: node-local-scratch
mode: scratch
granularity: per-node
stage-in:

list: /path/to/stage-in-listing
- label: PFS-cache

data-layout: striped
mode: cache
stage-in:

directory: /path/to/PFS

1

resources:
- type: node

count: 9
with:

- type: slot
count: 1
label: default
with:

- type: core
count: 2

- type: storage
count: 1
unit: terabytes
label: node-local-scratch

- type: storage
count: 4
unit: terabytes
label: PFS-cache

attributes:
storage:

- label: node-local-scratch
mode: scratch
granularity: per-node
stage-in:

list: /path/to/stage-in-listing
- label: PFS-cache

data-layout: striped
mode: cache
stage-in:

directory: /path/to/PFS

1

We can use the Fluxion to allocate these new storage tiers with 0 code changes

22
LLNL-PRES-844974

Use Case 3: Variation-aware scheduling with Fluxion: Addressing
Manufacturing Variability, Processor Aging, and inherent heterogeneity

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●●
●
●

●

●●

●
●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●
●

●

●●
●
●●

●

●●●
●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●

●

●●●

●●●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●●●●●

●

●

●

●
●●
●
●●
●

●

●●●
●

●
●
●
●●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●●
●●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●●

●
●●
●●●
●
●

●●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●●
●●

●
●

●

●
●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●
●●
●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●
●

●

●●●

●

●●

●
●●
●
●●

●●
●
●

●
●
●●
●

●

●●
●

●

●●
●●

●●

●●

●●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●
●

●

●●

●
●

●●
●●

●●

●

●●

●
●
●

●●

●●

●

●●●

●

●●●

●

●
●

●

●

●
●

●●

●●●
●
●

●

●●
●
●

●

●

●●

●
●●●

●

●
●●

●●
●

●

●

●

●●

●
●

●
●

●●

●●
●
●
●
●●
●

●

●

●

●

●

●

●
●●

●

●●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●●

●

●
●
●
●
●
●
●●
●●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●
●●●
●
●

●●

●

●●

●

●
●●●
●
●
●●●●●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●●
●
●●
●●
●●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●●

●
●
●●
●

●●●●

●

●
●
●●●●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●
●
●

●
●

●

●●

●

●

●

●●●

●
●
●

●●

●

●
●●

●

●

●
●

●

●●

●

●
●
●●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●
●
●
●
●
●
●
●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●

●

●

●
●
●

●
●

●

●

●●
●

●●

●

●
●

●

●
●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●●●
●●

●●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●●●●

●

●

●●

●
●

●
●

●

●●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●
●●
●●

●●

●
●

●

●
●●
●
●●

●●

●

●

●

●

●

●

●

●
●●
●
●●●●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●
●●

●

●●

●

●●●
●

●

●
●

●
●

●

●●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●
●
●●

●

●
●
●

●
●
●●●
●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●
●
●●
●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●
●●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●●●
●

●

●
●

●
●

●
●
●
●
●

●
●

●

●
●

●

●

●
●

●●
●

●

●●
●●

●●●

●

●●

●

●

●
●
●
●●

●

●●●●

●

●●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●●●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

●
●

●

●●●

●●

●●
●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●●
●

●●●●
●
●
●
●

●

●

●

●

●

●
●●●
●
●●

●

●
●●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●

●●●
●

●
●●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●
●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●
●●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●
●

●

●

●

●
●
●

●●

●

●●
●●

●

●
●
●

●●

●

●

●●●●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●●●●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●
●●

●

●

●

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Index

Ex
ec

ut
io

n
tim

e
(s

ec
s)

MG.C (single node)

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Sorted by Node ID

Ex
ec

ut
io

n
tim

e
(s

ec
s) LULESH (single node)

Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 MG.C

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 LULESH

1 2 3 4 5

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

1 2 3 4 5

Quartz Cluster Variation

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●●
●
●

●

●●

●
●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●
●

●

●●
●
●●

●

●●●
●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●

●

●●●

●●●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●●●●●

●

●

●

●
●●
●
●●
●

●

●●●
●

●
●
●
●●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●●
●●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●●

●
●●
●●●
●
●

●●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●●
●●

●
●

●

●
●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●
●●
●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●
●

●

●●●

●

●●

●
●●
●
●●

●●
●
●

●
●
●●
●

●

●●
●

●

●●
●●

●●

●●

●●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●
●

●

●●

●
●

●●
●●

●●

●

●●

●
●
●

●●

●●

●

●●●

●

●●●

●

●
●

●

●

●
●

●●

●●●
●
●

●

●●
●
●

●

●

●●

●
●●●

●

●
●●

●●
●

●

●

●

●●

●
●

●
●

●●

●●
●
●
●
●●
●

●

●

●

●

●

●

●
●●

●

●●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●●

●

●
●
●
●
●
●
●●
●●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●
●●●
●
●

●●

●

●●

●

●
●●●
●
●
●●●●●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●●
●
●●
●●
●●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●●

●
●
●●
●

●●●●

●

●
●
●●●●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●
●
●

●
●

●

●●

●

●

●

●●●

●
●
●

●●

●

●
●●

●

●

●
●

●

●●

●

●
●
●●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●
●
●
●
●
●
●
●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●

●

●

●
●
●

●
●

●

●

●●
●

●●

●

●
●

●

●
●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●●●
●●

●●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●●●●

●

●

●●

●
●

●
●

●

●●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●
●●
●●

●●

●
●

●

●
●●
●
●●

●●

●

●

●

●

●

●

●

●
●●
●
●●●●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●
●●

●

●●

●

●●●
●

●

●
●

●
●

●

●●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●
●
●●

●

●
●
●

●
●
●●●
●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●
●
●●
●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●
●●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●●●
●

●

●
●

●
●

●
●
●
●
●

●
●

●

●
●

●

●

●
●

●●
●

●

●●
●●

●●●

●

●●

●

●

●
●
●
●●

●

●●●●

●

●●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●●●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

●
●

●

●●●

●●

●●
●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●●
●

●●●●
●
●
●
●

●

●

●

●

●

●
●●●
●
●●

●

●
●●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●

●●●
●

●
●●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●
●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●
●●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●
●

●

●

●

●
●
●

●●

●

●●
●●

●

●
●
●

●●

●

●

●●●●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●●●●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●
●●

●

●

●

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Index

Ex
ec

ut
io

n
tim

e
(s

ec
s)

MG.C (single node)

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Sorted by Node ID

Ex
ec

ut
io

n
tim

e
(s

ec
s) LULESH (single node)

Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 MG.C

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 LULESH

1 2 3 4 5

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

1 2 3 4 5

Quartz Cluster Variation

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

• Real world example under power constraints:
Quartz cluster, 2469 nodes, 50 W CPU cap

• 2.47x difference between the slowest and the
fastest node for MG

• 1.91x difference for LULESH.

https://github.com/flux-framework/flux-sched/tree/master/resource/policies

https://github.com/flux-framework/flux-sched/tree/master/resource/policies

23
LLNL-PRES-844974

Example: Statically determining node performance classes

• Ranking every processor is not feasible

• Statically create bins of processors with similar
performance instead
• Techniques for this can be simple or complex
• How many classes to create, which benchmarks to

use, which parameters to tweak
• Our choice: 5 classes, LULESH and MG, 50 W cap

• Mitigation
• Rank-to-rank: minimize spreading application

across multiple performance classes
• Run-to-run: allocate nodes from same set

performance classes to similar applications

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●●●
●
●

●

●●

●
●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●
●
●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●
●

●

●●
●
●●

●

●●●
●

●

●
●

●

●●

●
●
●

●

●

●

●
●●

●

●

●●●

●●●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●
●
●

●

●

●●●●●

●

●

●

●
●●
●
●●
●

●

●●●
●

●
●
●
●●

●

●

●
●

●
●

●

●●

●

●
●

●

●●
●●
●●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●●

●
●●
●●●
●
●

●●●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●
●●
●●

●
●

●

●
●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●●●

●
●
●●

●

●

●●

●
●

●

●

●

●

●

●
●
●
●
●●
●
●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●
●
●

●

●●●

●

●●

●
●●
●
●●

●●
●
●

●
●
●●
●

●

●●
●

●

●●
●●

●●

●●

●●

●

●

●●

●

●●

●●
●

●

●
●

●

●

●
●

●

●●

●
●

●●
●●

●●

●

●●

●
●
●

●●

●●

●

●●●

●

●●●

●

●
●

●

●

●
●

●●

●●●
●
●

●

●●
●
●

●

●

●●

●
●●●

●

●
●●

●●
●

●

●

●

●●

●
●

●
●

●●

●●
●
●
●
●●
●

●

●

●

●

●

●

●
●●

●

●●

●
●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●●

●

●
●
●
●
●
●
●●
●●

●●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●
●●●
●
●

●●

●

●●

●

●
●●●
●
●
●●●●●

●

●
●
●

●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●●
●
●●
●●
●●
●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●
●
●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●●

●
●
●●
●

●●●●

●

●
●
●●●●
●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●
●
●

●
●

●

●●

●

●

●

●●●

●
●
●

●●

●

●
●●

●

●

●
●

●

●●

●

●
●
●●
●

●

●

●●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●
●
●
●
●
●
●
●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●●

●

●
●

●

●

●
●
●

●
●

●

●

●●
●

●●

●

●
●

●

●
●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●●●
●●

●●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●●●●

●

●

●●

●
●

●
●

●

●●

●

●
●

●●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●
●●
●●

●●

●
●

●

●
●●
●
●●

●●

●

●

●

●

●

●

●

●
●●
●
●●●●
●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●
●●

●

●●

●

●●●
●

●

●
●

●
●

●

●●

●

●
●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●
●
●●

●

●
●
●

●
●
●●●
●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●
●
●●
●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●
●●●

●
●
●●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●●●
●

●

●
●

●
●

●
●
●
●
●

●
●

●

●
●

●

●

●
●

●●
●

●

●●
●●

●●●

●

●●

●

●

●
●
●
●●

●

●●●●

●

●●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●
●

●●●

●
●

●

●

●

●

●
●

●

●

●

●
●●●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●●
●

●
●

●

●●●

●●

●●
●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●
●●
●

●●●●
●
●
●
●

●

●

●

●

●

●
●●●
●
●●

●

●
●●

●

●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●●

●

●●●
●

●
●●●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●

●
●

●
●●

●

●
●
●

●

●

●

●

●

●●

●

●
●●

●

●
●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●

●●

●●

●

●
●●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●
●

●

●

●

●
●
●

●●

●

●●
●●

●

●
●
●

●●

●

●

●●●●

●

●
●
●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●●●●●
●●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●
●
●●

●

●

●

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Index

Ex
ec

ut
io

n
tim

e
(s

ec
s)

MG.C (single node)

0 500 1000 1500 2000 2500

0

100

200

300

400

500

Sorted by Node ID
Ex

ec
ut

io
n

tim
e

(s
ec

s) LULESH (single node)

Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 MG.C

Scaled Execution Time (divided by maximum)

Fr
eq

ue
nc

y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

200

400

600

800

1000

1200 LULESH

1 2 3 4 5

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

1 2 3 4 5

Quartz Cluster Variation

Performance Class

Fr
eq

ue
nc

y

0

200

400

600

800

1000

1200

Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

24
LLNL-PRES-844974

Variation-aware scheduling results in 2.4x reduction in
rank-to-rank variation in applications with Flux

TABLE I: Comparison of the three policies in terms of rank-to-rank variation. The table shows the number of jobs
with a certain value of figure of merit. Having many jobs with a zero or one figure of merit value is considered good.

Policy fom = 0 fom = 1 fom = 2 fom = 3 fom = 4
HighestID 66 54 47 27 6
LowestID 79 34 43 33 11

Variation-aware 184 7 8 1 0

0 1 2 3 4

Difference in Perf Class

Fr
eq

ue
nc

y
(N

um
be

r o
f J

ob
s)

0

50

100

150

200
Baseline: Highest ID First

0 1 2 3 4

Difference in Perf Class
Fr

eq
ue

nc
y

(N
um

be
r o

f J
ob

s)

0

50

100

150

200
Baseline: Lowest ID First

0 1 2 3

Difference in Perf Class

Fr
eq

ue
nc

y
(N

um
be

r o
f J

ob
s)

0

50

100

150

200
Variation Aware:
Most Efficient Node First

Fig. 8: Results of the variation-aware policy depicting significant reduction in performance variation

References

[1] D. H. Ahn, J. Garlick, M. Grondona, D. Lipari, B. Springmeyer,
and M. Schulz, “Flux: A next-generation resource management
framework for large HPC centers,” in Proceedings of the

10th International Workshop on Scheduling and Resource

Management for Parallel and Distributed Systems, September
2014.

[2] B. Rountree, D. H. Ahn, B. R. de Supinski, D. K. Lowenthal, and
M. Schulz, “Beyond DVFS: A First Look at Performance under
a Hardware-Enforced Power Bound,” in IPDPS Workshops

(HPPAC). IEEE Computer Society, 2012, pp. 947–953.
[3] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree,

M. Schulz, D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda,
M. Kondo, and I. Miyoshi, “Analyzing and mitigating the
impact of manufacturing variability in power-constrained
supercomputing,” in Proceedings of the International

Conference for High Performance Computing, Networking,

Storage and Analysis, ser. SC ’15, 2015.
[4] A. Yoo, M. Jette, and M. Grondona, “SLURM: Simple Linux

Utility for Resource Management,” in Job Scheduling Strategies

for Parallel Processing, ser. Lecture Notes in Computer Science,
vol. 2862, 2003, pp. 44–60.

[5] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman,
M. Grondona, J. Garlick, B. Springmeyer, and M. Taufer,
“Scalable I/O-aware job scheduling for burst bu�er enabled
HPC clusters,” in Proceedings of the 25th ACM International

Symposium on High-Performance Parallel and Distributed

Computing (HPDC), 2016.
[6] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. Leung,

M. Egele, and A. K. Coskun, “Diagnosing performance
variations in hpc applications using machine learning,”
International Supercomputing Conference in High Performance

Computing (ISC-HPC), June 2017.
[7] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi,

and V. De, “Parameter Variations and Impact on Circuits and
Microarchitecture,” in Proceedings of the 40th annual Design

Automation Conference, June 2003, pp. 338–342.
[8] L. R. Harriott, “Limits of lithography,” Proceedings of the IEEE,

vol. 89, no. 3, pp. 366–374, 2001.
[9] J. W. Tschanz, J. T. Kao, S. G. Narendra, R. Nair, D. A.

Antoniadis, A. P. Chandrakasan, and V. De, “Adaptive Body
Bias for Reducing Impacts of Die-to-die and Within-die
Parameter Variations on Microprocessor Frequency and
Leakage,” Solid-State Circuits, IEEE Journal of, vol. 37,
no. 11, pp. 1396–1402, Nov 2002.

[10] S. Jilla, “Minimizing The E�ects of Manufacturing Variation
During Physcial Layout,” Chip Design Magazine, 2013,
http://chipdesignmag.com/display.php?articleId=2437.

[11] S. B. Samaan, “The Impact of Device Parameter Variations on
the Frequency and Performance of VLSI Chips,” in Computer

Aided Design, 2004. ICCAD-2004. IEEE/ACM International

Conference on, Nov 2004, pp. 343–346.
[12] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob,

K. Bowman, J. Howard, J. Tschanz, V. Erraguntla,
N. Borkar, V. De, and S. Borkar, “Within-Die Variation-Aware
Dynamic-Voltage-Frequency-Scaling With Optimal Core
Allocation and Thread Hopping for the 80-Core TeraFLOPS
Processor,” Solid-State Circuits, IEEE Journal of, vol. 46,
no. 1, pp. 184–193, Jan 2011.

[13] S. Borkar, “Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
Degradation,” Micro, IEEE, vol. 25, no. 6, pp. 10–16, Nov 2005.

[14] R. Teodorescu and J. Torrellas, “Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors,”
in Computer Architecture, 2008. ISCA ’08. 35th International

Symposium on, June 2008, pp. 363–374.
[15] R. F. V. der Wijngaart and H. Jin, “NAS Parallel Benchmarks,”

Tech. Rep., July 2003.
[16] “Livermore Unstructured Lagrangian

Explicit Shock Hydrodynamics,”
https://computation.llnl.gov/casc/ShockHydro/.

[17] H. David, E. Gorbatov, U. Hanebutte, R. Khanna, and
C. Le, “RAPL: Memory Power Estimation and Capping,” in
Proceedings of the 16th ACM/IEEE international symposium

on Low power electronics and design, ser. ISLPED ’10, 2010,
pp. 189–194.

[18] Intel, “Intel-64 and IA-32 Architectures Software Developer’s
Manual, Volumes 3A and 3B: System Programming Guide,”
2011.

Flux’s graph-based resource model easily and effectively enables
this variation-aware scheduler optimization

25
LLNL-PRES-844974

Conclusions

§ Fluxion is a graph-based resource model that
addresses scheduling challenges in the exascale
era and beyond

§ Elevates resource relationships to an equal footing
with resources to allow for representation of
diverse resource sets and subsystems

§ Supports expressibility, flexibility, separation of
concerns and elasticity in a scalable manner

§ Implementations within Flux and Kubernetes allow
for support of converged computing in addition to
traditional HPC

https://github.com/flux-framework/flux-sched

https://github.com/flux-framework/flux-sched

Thank you!
Questions?

