Fluxion: A Scalable Graph-Based Resource Model for
HPC Scheduling Challenges

Tapasya Patki, Dong Ahn*, Daniel Milroy, Jee-Seung Yeom, Jim Garlick, Stephen Herbein*, Tom Scosland

Lawrence Livermore National Laboratory NVIDIA Corporation*

Fluxion: A Scalable Graph-Based Resource Model for HPC Scheduling Challenges

WORKS Workshop, SC'23

Tapasya Patki, Dong Ahn*, Daniel Milroy, Jae-Seung Yeom, Jim Garlick, Stephen Herbein*, Tom Scogland
Nov 13, 2023
https://github.com/flux-framework/flux-sched

Sierra pre-exascale system is a wakeup call (MuMMI).

Trends towards complex workflows, extreme resource heterogeneity, and converged computing render traditional workload managers increasingly ineffective.

The changes in resource types are equally challenging.

- Problems are not just confined to the workload/workflow challenge.
- Resource types and their relationships are also becoming increasingly complex.
- Much beyond compute nodes and cores requiring partial occupancy and accounting... - GPGPUs, Burst buffers
- I/O and network bandwidth, Power management - Variation
- Converged computing and disaggregated system designs require support for elasticity and dynamism

The traditional resource data models are largely ineffective to cope with these resource challenges.

- Resource Models: Internal representations and data structures used for managing resources (e.g. nodes, cores, memory, power)
- Node- or core-centric models are typical
- Designed over 20 years ago when heterogeneity was uncommon, and memory was limited
- Pros: scheduling overhead and space complexity is low
- Cons:
- Cannot represent resource relationships beyond physical hierarchy
- Partial occupancy or level of detail for flow resources cannot be specified easily
- Do not have a notion of containment or subsystems, e.g. allocating across a power or I/O subsystem hierarchy simultaneously
- Do not support dynamic updates to resource pools

Incremental improvements are insufficient to address this gap for supporting advanced use cases.

- Approaches such as GRES plugins (SLURM) or custom resources (PBSPro) exist, but are still node-centric and cannot express complex resource relationships
- Scalability and management can become unwieldy
- Every new resource type requires new a userdefined type
- A new relationship requires a complex set of pointers cross-referencing different types.
- Dynamic updating of resources is not supported
- Cannot allocate through diverse hierarchies or resource pools simultaneously

Examples:

- SLURM: bitmaps to represent a set of compute nodes, and GRES plugins for custom resources
- PBSPro: linked-list of nodes with custom resource definitions

A graph-based resource model supports five key properties that address these challenges.

- Universality and Expressibility: Ability to model arbitrary and diverse resource types along with the various relationships between them
- Flexibility: Ability to support scheduling points at different levels of detail (eg. core, GPU, network bandwidth, power)
- Scalability: Ability to scale well and leverage parallelism across diverse setups, ranging from containers, to clouds, to supercomputers.
- Separations of Concerns: Ability to construct the resource model separately from the scheduling policy, allowing for support for scheduling policy customizations.
- Elasticity: Ability to update internal representations and data structures dynamically, to support moldability, malleability and variable capacity.

Fluxion pioneers and uses graph-based scheduling to manage complex combinations of extremely heterogenous resources.

Containment subsystem

Network subsystem

- Elevate resource relationships (edges) to an equal footing with resources (vertices)
- Resource Pool: group of indistinguishable resources (e.g. cores), can be viewed as coarse or fine grained
- Graph:
- Vertex represents a resource pool

Containment and I/O subsystems

- Edge has a type and subsystem attached

End-to-end scheduling flow with Fluxion

- In-memory resource graph store is populated with available resources (shown in Step 2), along with the level of detail and traversal type (e.g. depth-first)
- User's request is obtained as a request graph (Step 3)
- Matching policy (Step 4) callback is invoked on visit events (e.g. pre-order or post-order), and includes a scoring mechanism for ranking matches
- Planner allows for resource time tracking (like a calendar)
- Pruning filters and Scheduler Driven Filter Updates (SDFU) allow for better scalability

Fluxion's graph-based resource model can integrate with many resource managers, such as Flux and Kubernetes

Fluxion uses Level of Detail (LOD) control to improve expressibility and scalability of graph models.

- Resource pools combined with subsystems enable different granularities of scheduling easily
- E.g., select whether scheduling occurs at the nodelevel, rack-level, gpu-level or storage-node-level
- Coarse granularity
- Higher performance
- Pool together resources of the same type as a single vertex
- Finer granularity
- Promote subdivisions of resources to their own vertex
- Graph filtering allows for selecting relevant subsystems in complex schedulers with multiple subsystems (e.g. containment and power)

Fluxion's graph-oriented canonical job-spec allows for a highly expressive user resource requests specification.

- Graph-oriented resource requests
- Express the resource requirements of a program to the scheduler
- Express program attributes such as arguments, run time, and task layout, to be considered by the execution service
- cluster->racks[2]->slot[3]->node[1]->sockets[2]->core[18]
- slot is the only non-physical resource type
- Represent a schedulable place where program process or processes will be spawned and contained
- Referenced from the tasks section

```
version: 1
resources:
    - type: cluster
        count: 1
    with:
        type: rack
        count: 2
        with:
        label: myslot
        count: 3
        with:
        count: 1
            with:
                type: socket
                count: 2
                                    with:

Fluxion maps complex scheduling problems into graph matching problems and allows for ranking between options.


\section*{Fluxion uses graph filtering and pruning to manage the graph complexity and optimize graph search.}
- The total graph can be quite complex
- Two techniques to manage the graph complexity and scalability
- Filtering reduces graph complexity

Containment+Network Containment

- The graph model needs to support schedulers with different complexity
- Provide a mechanism by which to filter the graph based on what subsystems to use
- Pruned search increases scalability
- Fast RB tree-based planner is used to implement a pruning filter per each vertex.
- Pruning filter keeps track of summary information (e.g., aggregates) about subtree resources.

- Scheduler-driven pruning filter update

\section*{Scalability Results: Level of Detail along with Pruning}

Evaluate a 1008 compute node system with four levels of detail:
- High LOD:
- 56 compute racks, 18 nodes, with 2 sockets.
- 20 cores, 2 GPUs, 8 memory ( 16 GB each), 8 burst-buffers (BB) (100 GB) per socket
- Med LOD:
- Same system, but remove socket-level detail
- 40 cores, 4 GPUs, 8 memory ( 32 GB ) and 8 BB (200 GB) per node
- Low LOD:
- Remove rack-level vertices
- Create a new core-pool of 5 cores each, 4 memory ( 64 GB ) and 4 BB (400 GB) per node
- Low2 LOD:
- Similar to Low, but doesn't remove rack vertices

Time taken for matching all job requests with varying LOD, and with and without pruning

- Job request:
- 10 cores, 8 GB memory, 1 BB
- Repeat until system is fully allocated

\section*{Scalability Results: Planner scalability}
- Evaluate with 128 units of an unnamed resource with maximum time of 12 hours.
- Up to 1 million prepopulated spans with \(<r, d>\) (resource amount, duration) drawn from a uniform distribution of \((1,128)\) and \((1 s, 43200 s)\)
- SatAt:
- How quickly can a new request \(R\) with increasing amounts of \(r\) and unit duration be satisfied at a random time t?
- SatDuring:
- How quickly can a new request \(R\) with increasing amounts of both \(r\) and \(d\) be satisfied at a random time \(t\) ?

- EarliestAt:
- How quickly can we find the earliest fit for a new request \(R\) with increasing amounts of \(r\) ?

\section*{Use Case 1: The Fluence (FKA KubeFlux) plugin brings HPCgrade scheduling and improved performance to Kubernetes.}

K8s Scheduling Framework plugin based on Fluxion scheduler.

Architectural change from monolithic to gRPC-based
- Improves maintainability, separation of concerns

image: https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
More placement control and functionality
- Gang scheduling
- GPU support
- Topology awareness of Availability Zones (AZs)

Easier deployment
- Automation through Helm
- Export of Golang modules for easier distribution

\section*{Use Case 2: Tiered Storage in HPC with Rabbits}



\section*{Burst Buffer Architectures}

Node-local BB


Remote, shared BB


\section*{Parallel File System}

Filesystem BB


\section*{Example of Tiered Storage Request}


We can use the Fluxion to allocate these new storage tiers with 0 code changes

\section*{Use Case 3: Variation-aware scheduling with Fluxion: Addressing Manufacturing Variability, Processor Aging, and inherent heterogeneity}


- Real world example under power constraints: Quartz cluster, 2469 nodes, 50 W CPU cap
- 2.47x difference between the slowest and the fastest node for MG
- 1.91x difference for LULESH.

\section*{Example: Statically determining node performance classes}
- Ranking every processor is not feasible
- Statically create bins of processors with similar performance instead
- Techniques for this can be simple or complex
- How many classes to create, which benchmarks to use, which parameters to tweak
- Our choice: 5 classes, LULESH and MG, 50 W cap
- Mitigation
- Rank-to-rank: minimize spreading application across multiple performance classes
- Run-to-run: allocate nodes from same set performance classes to similar applications


\section*{Variation-aware scheduling results in 2.4 x reduction in rank-to-rank variation in applications with Flux}




Flux's graph-based resource model easily and effectively enables this variation-aware scheduler optimization

\section*{Conclusions}
- Fluxion is a graph-based resource model that addresses scheduling challenges in the exascale era and beyond
- Elevates resource relationships to an equal footing with resources to allow for representation of diverse resource sets and subsystems
- Supports expressibility, flexibility, separation of concerns and elasticity in a scalable manner
- Implementations within Flux and Kubernetes allow for support of converged computing in addition to traditional HPC
https://github.com/flux-framework/flux-sched


\section*{Thank you! Questions?}

LL Lawrence Livermore National Laboratory```

