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Sierra pre-exascale system is a wakeup call (MuMMI).

Single Macro Simulation
C++ (with MPI); MOOSE; ddcMD
24 CPU cores/node; 2400 MPI tasks
242 GB per day

ML-based Selection
Python; ML frameworks; FAISS
24 CPU cores 
>1000 decisions per minute

CG Setup
Python; Custom; GROMACS
24 CPU cores each 1.5 hr each

…
FIFO; real-time tracking & update

CG Simulation
C++ (with CUDA); ddcMD
1 GPU + 1 CPU core each
1.04 µs and ~6.5 GB per day

In situ CG Analysis
Python; Custom
3 CPU cores each
>2K frames per day

…

Analysis Aggreg. & Feedback
Python; Custom
24 CPU cores
120,000 reads per cycle 

!	
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Trends towards complex workflows, extreme resource heterogeneity, 
and converged computing render traditional workload managers 
increasingly ineffective.

New pillar

Co-scheduling

Job throughput

Job communication/coordination

Portability

Extremely heterogenous resources
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The changes in resource types are equally challenging.

§ Problems are not just confined to the 
workload/workflow challenge.

§ Resource types and their relationships are 
also becoming increasingly complex.

§ Much beyond compute nodes and cores 
requiring partial occupancy and accounting...
— GPGPUs, Burst buffers
— I/O and network bandwidth, Power management
— Variation 

§ Converged computing and disaggregated 
system designs require support for elasticity 
and dynamism

PFS BW Capacity
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§ Resource Models: Internal representations and data structures used for 
managing resources (e.g. nodes, cores, memory, power)

§ Node- or core-centric models are typical 
— Designed over 20 years ago when heterogeneity was uncommon, and memory was 

limited 

§ Pros: scheduling overhead and space complexity is low

§ Cons: 
— Cannot represent resource relationships beyond physical hierarchy
— Partial occupancy or level of detail for flow resources cannot be specified easily
— Do not have a notion of containment or subsystems, e.g. allocating across a power or 

I/O subsystem hierarchy simultaneously
— Do not support dynamic updates to resource pools

The traditional resource data models are largely 
ineffective to cope with these resource challenges.
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Incremental improvements are insufficient to address this 
gap for supporting advanced use cases.

§ Approaches such as GRES plugins (SLURM) 
or custom resources (PBSPro) exist, but are 
still node-centric and cannot express 
complex resource relationships

§ Scalability and management can become 
unwieldy
— Every new resource type requires new a user-

defined type
— A new relationship requires a complex set of 

pointers cross-referencing different types.
— Dynamic updating of resources is not supported
— Cannot allocate through diverse hierarchies or 

resource pools simultaneously

Examples: 
• SLURM: bitmaps to represent a set of 

compute nodes, and GRES plugins for 
custom resources

• PBSPro: linked-list of nodes with custom 
resource definitions
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A graph-based resource model supports five key 
properties that address these challenges. 

• Universality and Expressibility: Ability to model arbitrary and diverse resource 
types along with the various relationships between them

• Flexibility: Ability to support scheduling points at different levels of detail (eg. 
core, GPU, network bandwidth, power)

• Scalability: Ability to scale well and leverage parallelism across diverse setups, 
ranging from containers, to clouds, to supercomputers.

• Separations of Concerns: Ability to construct the resource model separately from 
the scheduling policy, allowing for support for scheduling policy customizations.

• Elasticity: Ability to update internal representations and data structures 
dynamically, to support moldability, malleability and variable capacity.
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Fluxion pioneers and uses graph-based scheduling to manage 
complex combinations of extremely heterogenous resources.

§ Elevate resource relationships (edges) to an equal footing 
with resources (vertices)

§ Resource Pool: group of indistinguishable resources (e.g. 
cores), can be viewed as coarse or fine grained

§ Graph: 
— Vertex represents a resource pool
— Edge has a type and subsystem attached 

Containment subsystem Network subsystem Containment and I/O subsystems
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RM (Flux, k2s …)

SDFU

Queuing Policy Match Policy

(3) (2)

(1) (4)

(5)

(7) Tr
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er
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r 
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pe

LOD-configurable graph

Emit

Match

(6) Planner & 
Pruning Filter

t1 t2 t6

End-to-end scheduling flow with Fluxion

• In-memory resource graph store is populated with 
available resources (shown in Step 2), along with the 
level of detail and traversal type (e.g. depth-first) 

• User’s request is obtained as a request graph (Step 3)

• Matching policy (Step 4) callback is invoked on visit 
events (e.g. pre-order or post-order), and includes a 
scoring mechanism for ranking matches

• Planner allows for resource time tracking  (like a 
calendar)

• Pruning filters and Scheduler Driven Filter Updates 
(SDFU) allow for better scalability 

Fluxion’s graph-based resource model 
can integrate with many resource 
managers, such as Flux and Kubernetes
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§ Resource pools combined with subsystems enable 
different granularities of scheduling easily
— E.g., select whether scheduling occurs at the node-

level, rack-level, gpu-level or storage-node-level

§ Coarse granularity 
— Higher performance 
— Pool together resources of the same type as a single 

vertex

§ Finer granularity
— Promote subdivisions of resources to their own vertex

§ Graph filtering allows for selecting relevant 
subsystems in complex schedulers with multiple 
subsystems (e.g. containment and power)

Fluxion uses Level of Detail (LOD) control to improve 
expressibility and scalability of graph models.
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Fluxion’s graph-oriented canonical job-spec allows for a 
highly expressive user resource requests specification.

§ Graph-oriented resource requests
— Express the resource requirements of a program to the scheduler
— Express program attributes such as arguments, run time, and task 

layout, to be considered by the execution service

§ cluster->racks[2]->slot[3]->node[1]->sockets[2]->core[18]

§ slot is the only non-physical resource type
— Represent a schedulable place where program process or 

processes will be spawned and contained 

§ Referenced from the tasks section
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Fluxion maps complex scheduling problems into graph 
matching problems and allows for ranking between options.

Traverse, match and score
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Fluxion uses graph filtering and pruning to manage the 
graph complexity and optimize graph search.
§ The total graph can be quite complex

— Two techniques to manage the graph complexity 
and scalability

§ Filtering reduces graph complexity
— The graph model needs to support schedulers 

with different complexity
— Provide a mechanism by which to filter the graph 

based on what subsystems to use

§ Pruned search increases scalability
— Fast RB tree-based planner is used to implement 

a pruning filter per each vertex.
— Pruning filter keeps track of summary information 

(e.g., aggregates) about subtree resources.
— Scheduler-driven pruning filter update

Filtering

Containment+Network Containment

Pruning

Prune filter 
tracks  available 
node count in 
aggregate at the 
subtree
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Scalability Results: Level of Detail along with Pruning

Evaluate a 1008 compute node system with four levels of detail:
• High LOD: 

• 56 compute racks, 18 nodes, with 2 sockets. 
• 20 cores, 2 GPUs, 8 memory (16GB each), 8 burst-buffers (BB) 

(100 GB) per socket
• Med LOD: 

• Same system, but remove socket-level detail
• 40 cores, 4 GPUs, 8 memory (32 GB) and 8 BB (200 GB) per 

node 
• Low LOD:

• Remove rack-level vertices 
• Create a new core-pool of 5 cores each, 4 memory (64 GB) and 

4 BB (400 GB) per node
• Low2 LOD:

• Similar to Low, but doesn’t remove rack vertices

• Job request:
• 10 cores, 8 GB memory, 1 BB
• Repeat until system is fully allocated

Time taken for matching all job requests with 
varying LOD, and with and without pruning
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Scalability Results: Planner scalability

• Evaluate with 128 units of an unnamed resource with 
maximum time of 12 hours.

• Up to 1 million prepopulated spans with <r,d> 
(resource amount, duration) drawn from a uniform 
distribution of (1,128) and (1s, 43200s)

• SatAt:
• How quickly can a new request R with increasing 

amounts of r and unit duration be satisfied at a random 
time t? 

• SatDuring: 
• How quickly can a new request R with increasing 

amounts of both r and d be satisfied at a random time t? 
• EarliestAt:

• How quickly can we find the earliest fit for a new request 
R with increasing amounts of r ?

Planner performance with different span 
counts and query types 
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Use Case 1: The Fluence (FKA KubeFlux) plugin brings HPC-
grade scheduling and improved performance to Kubernetes.

K8s Scheduling Framework plugin based 
on Fluxion scheduler.

Architectural change from monolithic to 
gRPC-based
§ Improves maintainability, separation of 

concerns

More placement control and functionality
§ Gang scheduling
§ GPU support
§ Topology awareness of Availability Zones 

(AZs)

image: https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

Easier deployment
§ Automation through Helm
§ Export of Golang modules for easier 

distribution
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Use Case 2: Tiered Storage in HPC with Rabbits

5x
12x

64x 

13x

Source: Lucy Nowell (DOE)
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Burst Buffer Architectures

CN CN CN

CN CN CN

CN CN CN

SSD SSD

Parallel File System

IB

ION

SSD

SSD SSD SSD

SSD SSD SSD

CN CN CN

CN CN CN

CN CN CN

Parallel File System

BB
SSD

BB
SSD

IB

ION

SSD SSD
SSD SSD

Remote, shared BBNode-local BB Filesystem BB

CN CN CN

CN CN CN

CN CN CN

IB

ION

Parallel File System
SSD SSD SSD SSD SSD
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Example of Tiered Storage Request

BB
SSD

BB
SSD

SSD SSD
SSD SSD

CN CN CN

CN CN CN

CN CN CN

SSD SSD

IB

ION

SSD

SSD SSD SSD

SSD SSD SSD

resources:
- type: node

count: 9
with:

- type: slot
count: 1
label: default
with:

- type: core
count: 2

- type: storage
count: 1
unit: terabytes
label: node-local-scratch

- type: storage
count: 4
unit: terabytes
label: PFS-cache

attributes:
storage:

- label: node-local-scratch
mode: scratch
granularity: per-node
stage-in:

list: /path/to/stage-in-listing
- label: PFS-cache

data-layout: striped
mode: cache
stage-in:

directory: /path/to/PFS

1

resources:
- type: node

count: 9
with:

- type: slot
count: 1
label: default
with:

- type: core
count: 2

- type: storage
count: 1
unit: terabytes
label: node-local-scratch

- type: storage
count: 4
unit: terabytes
label: PFS-cache

attributes:
storage:

- label: node-local-scratch
mode: scratch
granularity: per-node
stage-in:

list: /path/to/stage-in-listing
- label: PFS-cache

data-layout: striped
mode: cache
stage-in:

directory: /path/to/PFS

1

We can use the Fluxion to allocate these new storage tiers with 0 code changes
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Use Case 3: Variation-aware scheduling with Fluxion:  Addressing 
Manufacturing Variability, Processor Aging, and inherent heterogeneity 
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Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket
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Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance
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Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket
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Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance

• Real world example under power constraints: 
Quartz cluster, 2469 nodes, 50 W CPU cap

• 2.47x difference between the slowest and the 
fastest node for MG 

• 1.91x difference for LULESH. 

https://github.com/flux-framework/flux-sched/tree/master/resource/policies 

https://github.com/flux-framework/flux-sched/tree/master/resource/policies
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Example: Statically determining node performance classes

• Ranking every processor is not feasible

• Statically create bins of processors with similar 
performance instead
• Techniques for this can be simple or complex
• How many classes to create, which benchmarks to 

use, which parameters to tweak
• Our choice: 5 classes, LULESH and MG, 50 W cap

• Mitigation
• Rank-to-rank: minimize spreading application 

across multiple performance classes
• Run-to-run: allocate nodes from same set 

performance classes to similar applications
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Fig. 4: Execution time of benchmarks on 2469 nodes of Quartz at 50W per socket
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Fig. 5: (a) Histogram of scaled execution times of single-node runs of NAS MG.C and LULESH on 2469 nodes of
Quartz, (b) Performance classes for 39 racks (2418 nodes) of Quartz

Figure 5 (b) depicts a histogram of the 2418 nodes
across 5 performance classes based on the ranges specified
in Equation 4. We pick these specific ranges just for
demonstration purposes. More advanced techniques for
combining performance data as well as grouping into
classes can be employed. We do not study such techniques
in this paper.

Pj := {pa|a œ n · allocated(a, j)}
fomj = max(Pj) ≠ min(Pj) (5)

D. Figure of Merit for Rank-To-Rank Variation
Rank-to-rank variation for an application can be

minimized by ensuring that the allocated nodes span as
few performance classes as possible. Thus, if allocated(a, j)
returns true when node a has been allocated to job j, we

can determine the figure of merit a single application as
shown in Equation 5. Here, Pj is the set comprising of
the performance class associated with each node that is
allocated to the job. When fomj is zero, it means that
the application will exhibit little or no variation. A good
scheduling policy will try to maximize the number of jobs
that have a zero or low fomj . We can thus gauge the
e�ectiveness of a policy by looking at the number of jobs
for which the di�erence in performance classes was zero. It
is important to note here that the number of performance
classes chosen plays an important role, and we assume
that a reasonable number of classes is chosen. In our case,
we chose 5 performance classes, as depicted in Equation 4.
If there was only a single performance class, fomj would
always be zero and will fail to capture the high amount of
variation that jobs incur. If we had too many performance
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Variation-aware scheduling results in 2.4x reduction in 
rank-to-rank variation in applications with Flux 

TABLE I: Comparison of the three policies in terms of rank-to-rank variation. The table shows the number of jobs
with a certain value of figure of merit. Having many jobs with a zero or one figure of merit value is considered good.

Policy fom = 0 fom = 1 fom = 2 fom = 3 fom = 4
HighestID 66 54 47 27 6
LowestID 79 34 43 33 11

Variation-aware 184 7 8 1 0
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Fig. 8: Results of the variation-aware policy depicting significant reduction in performance variation
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Flux’s graph-based resource model easily and effectively enables 
this variation-aware scheduler optimization
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Conclusions

§ Fluxion is a graph-based resource model that 
addresses scheduling challenges in the exascale 
era and beyond

§ Elevates resource relationships to an equal footing 
with resources to allow for representation of 
diverse resource sets and subsystems

§ Supports expressibility, flexibility, separation of 
concerns and elasticity in a scalable manner

§ Implementations within Flux and Kubernetes allow 
for support of converged computing in addition to 
traditional HPC

https://github.com/flux-framework/flux-sched

https://github.com/flux-framework/flux-sched


Thank you!
Questions?


