
11/12/2023 1

Delivering Rules Based Workflows for Science

Presenting: David Marchant,
Contributors: Mark Blomqvist, Philip Shun B. Jensen, Iben Lilholm, Martin Nøregard

11/12/2023 2

Part I: Managing Event Oriented Workflows

11/12/2023 3

MEOW

• Managing Event Oriented Workflows

• Rules-based system for isolated job
scheduling

• Composed of Patterns and Recipes

• Workflow structure can be altered by
adding, canceling or modifying jobs or
monitoring structures

• ‘Assessing Events for Scheduling in
Heterogeneous Systems’

• Presented at Works ‘22. Seemed well
received, but some
suggestions/questions

Resources

Monitor

Storage

writes output to

schedules
jobs on

events are
seen by

11/12/2023 4

Top-down vs Bottom-up

Traditional, Static, Top-Down New, Dynamic, Bottom-Up

VS

11/12/2023 5

mig_meow
• Python library for building MEOW objects

• Users define Recipes (the code to run) … or Patterns (The conditions when to run)

• Together these form a Rule (Scheduling in response to events)

• But is very tied to the MiG, Jupyter Notebooks, file events etc.

input_file: infile
input_paths:
- initial_data/*
output:
 outfile: ’{VGRID}/int_1/{FILENAME}’
parameterize_over: {}
recipes:
- append_text
variables:
 extra: This line is overridden

11/12/2023 6

Project Aims

• Create a truly stand-alone framework for rules based scheduling

• Allow for integration with existing scheduling frameworks

• Solve issue of identifying arbitrary job results

• Provide scientific use case

11/12/2023 7

Part II: A Generic Framework for MEOW

11/12/2023 8

meow_base

• Standalone framework for constructing MEOW systems

• Written in Python, but designed to run analysis in any language (pending support)

• Still uses same Pattern, Recipe, Rule definitions as before

• Provides MEOWRunner, to orchestrate complete workflow lifetime

• Breaks job functionality down into different components

11/12/2023 9

Base Components

• Abstract base components for
Patterns, Recipes, Monitors,
Handlers, Conductors

• Example implementations for
each, providing functionality for
file and network events, and
processing Python or Bash based
jobs.

BaseRecipe
name:str
recipe:Any
parameters:Dict[str, Any]
requirements:Dict[str, Any]

__init__(self,
 name:str,
 recipe:Any,
 parameters:Dict[str,Any]={},
 requirements:Dict[str,Any]={})
__new__(cls, *args, **kwargs)
_is_valid_name(self, name:str)→None
_is_valid_recipe(self, recipe:Any)→None
_is_valid_parameters(self, parameters:Any)→None
_is_valid_requirements(self, requirements:Any)->None

11/12/2023 10

MeowRunner

MeowRunner

Conductor 1

Conductor c

...

Handler 1

Handler h

...

Monitor 1

Monitor m

...

Event Queue Job Queue

External System

User

11/12/2023 11

Integration with Slurm and SSH

• Slurm is a common system for orchestrating jobs on HPC resources

• meow_base includes options in BaseConductor for integrating with a locally hosted
slurmCtl daemon

• Jobs automatically setup to be compatible with MEOW file event handling

Conductor Resource
Assemble job script

srun/sbatch

slurmctl

slurmd

mount

execute

Job Queue

11/12/2023 12

Part III: Identifying Arbitrary Outputs

11/12/2023 13

meow_base as a SWMS

• MEOW was first intended as a tool for scientific workflows

• Most features expected of Scientific Workflow Management Systems are already present

• Provenance reporting is lacking though. Main issue is MEOW jobs do not need to specify
outputs

11/12/2023 14

Tools to Identify Outputs

• Investigated 4 potential tools

• Each traces file events

• Assumed that if output was
never written, it could be
ignored

• Strace is the only tool that
meets our needs

strace perf inotify fanotify

Observes File events x x x x

Provides event PID x x x

Provides event path x x x

Monitor whole filesystem x x x

Avoids race conditions x x x

Does not require root x x

Observes through Mounts x x x x

Tool feature summary

11/12/2023 15

Tool Overheads

• Tested in with scripts that spam
create and delete events.
Designed to show ‘worst use
case’

• Also with scientific analysis.
Designed to show ‘realistic use
case’

• Strace is slow, but others can’t
be used without caveats

strace perf inotify fanotify

Bash Script x5.49 x5.46 x1.03 x1.03

Python Script x4.58 x1.12 x1.16 x1.18

Analysis with Generation x3.04 x1.05 x1.04 x1.05

Analysis without Generation x1.49 x1.05 x1.00 x1.01

Tool slowdowns. All slowdowns shown relative to their
respective test, run without the tool

11/12/2023 16

Part IV: A Scientific Example

11/12/2023 17

Converting to BIDs format

Subject

Session

Conversion Potential
BIDS

Validation BIDS Analysis Result Completion

Problem
data

Notification Error
email

User
Success

email

• Automatic conversion of brain imaging data into new standard, BIDS

• Highly repeatable, but needs human touch periodically

• Large existing datasets need updating

11/12/2023 18

Setting up Patterns and Recipes

• Setup consists of writing recipe files
(standard Python, bash or Jupyter scripts are
natively supported)

• Patterns are assembled as objects as shown

• Only one pattern and recipe shown here

Automatic conversion of bids data
p_convert = FileEventPattern(
 "conversion_pattern",
 os.path.join(raw_dir, "*", "*", "*"),
 "conversion_recipe",
 "input_base",
 parameters={
 "output_base": "meow_bids/meow/validating"),
 },
 event_mask=[
 DIR_CREATE_EVENT,
 DIR_MODIFY_EVENT,
 DIR_RETROACTIVE_EVENT
]
)

r_convert = BashRecipe(
 "conversion_recipe",
 read_file_lines("recipes/conversion.sh")
)

11/12/2023 19

Assemble them into a dictionary

• Create a collection of all Patterns and Recipes

• Note the use of provided meow_base helper
functions to ensure easy compatibility

patterns = assemble_patterns_dict(
 [
 p_convert,
 p_validate,
 p_notify,
 p_analysis,
 p_complete,
]
)

recipes = assemble_recipes_dict(
 [
 r_convert,
 r_validate,
 r_notify,
 r_analysis
]
)

11/12/2023 20

Create the Runner from Components

• Runner is created by combining at least one
Monitor, Handler and Conductor

• Usable examples of each included in
meow_base, along with appropriate Patterns
and Recipes

• Once started will run robustly until stopped
by the user

The actual runner, that will conduct all scheduling
and analysis
runner = MeowRunner(
 WatchdogMonitor(
 base_dir,
 patterns,
 recipes,
 # This can be set to 0 to turn off logging
 logging=3
),
 BashHandler(
 pause_time=1
),
 LocalBashConductor(
 pause_time=1,
 notification_email="alert@localhost",
 notification_email_smtp="localhost:1025"
)
)

runner.start()

11/12/2023 21

Part V: Performance Benchmarks

11/12/2023 22

meow_base Performance tests

C 3

B 2

A 1

MRSE

MRME

C 3

B 2

A 1

1

A 2

3
SRSEP

1

A 2

3

SRME

SRSES A 1 A 2 A 3

• Same overheads as previous MEOW systems

• Single Rule Single Event Parrallel (SRSEP)

• Multiple Rules Single Events(MRSE)

• Single Rule Multiple Events (SRME)

• Multiple Rules Multiple Events (MRME)

• Single Rule Single Event Sequential (SRSES)

11/12/2023 23

meow_base Performance

10
20

30
40

50
60

70
80

90
100

125 150 175 200 250 300 400 500

Number of jobs scheduled

101

102

103
Ti

m
e

ta
ke

n
(s

ec
on

ds
)

meow_base MeowRunner scheduling overheads on the Threadripper

MRME
MRSE
SRME

SRSES
SRSEP

11/12/2023 24

meow_base Performance

10 100 500 mean

SRME 0.23s 0.066s 0.079s 0.086s

MRSE 0.22s 0.063s 0.087s 0.086s

MRME 0.27s 0.066s 0.10s 0.087s

SRSEP 0.22s 0.068s 0.093s 0.089s

SRSES 3.43s 3.45s 3.40s 3.41s

• Scales well (at least as far as has been
rigorously tested)

• Generally slower than barebones
mig_meow implementation, but faster
than full MiG implementation

• Per job processing time is both small,
and scalable

• Sequential is, as always, terrible. Comes
from including job execution and all that
entails

meow_base per job overheads

20
30

40
50

60
70

80
90

100
125 150 175 200 250 300 400 500

Number of jobs scheduled

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

Ti
m

e
ta

ke
n

(s
ec

on
ds

)

Difference in per-job meow_base MeowRunner scheduling overheads on the Threadripper

MRME
MRSE
SRME

SRSES
SRSEP

11/12/2023 25

Part VI: Conclusions

11/12/2023 26

MEOW Workflows as a Basis for Science

• meow_base is a more generic framework for rules based scientific workflows

• Available now as a standalone tool, or as a basis for further implementations

• https://pypi.org/project/meow-base/

• Novel scientific workflow structures have been demonstrated

• Arbitrary outputs can be identified, but a more efficient solution is needed

11/12/2023 27

Thank you for listening

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

