2 SC23

Denver,CO | i am hpc.

Leveraging LLMs to
Build and Execute Computational Workflows

Phyloflow & Parsl

* Cancer phylogenies are graphs that represent the evolutionary
relationships and growth of tumors

e Phylogenetic workflows are pipelines used to build phylogenetic graphs
by processing genomic and mutagenic data in a multistep process

e These often use WDL (Workflow Description Language), a bioinformatic
framework for executing scientific workflows; the workflow we primarily
researched, phyloflow, made heavy usage of WDL

e We started by porting the phyloflow WDL workflow to Parsl, a Python
scientific computing framework that enables simplification of
workflows, easy parallelization, extension of workflows, and more
portability

1T ILLINOIS NCSA

&
vcf_to_qugonevw_wn
pycloneﬁé@lustemng
cl LIStGI’S_@%SprCG_i n
sptuce_@ﬁ_bulding

agg:'e@Jso'1

More on Phyloflow

Workflow steps /
* Load a VCF file generated by 'mutect' and its annotated version from
VEP (Variant Effect Pipeline)
* Convert the mutations from the VCF file into the required input format / i

for 'pyclone-vi' S

Clusters to
Spruce

e Execute 'pyclone-vi' to cluster the mutations

* Adapt the output of the pyclone clustering to be compatible with /
'spruce’ tree inference e

Building

* Run'spruce' to infer the phylogenies that describe the tumor’s /
evolutionary history

« Gather the relevant output files and merge them into a JSON file that / o
works with the PhyloDiver visualization tool

Aggregate

Each step was converted to a Parsl app

1T ILLINOIS NCSA

Parsl: parallel programming in Python

Apps define opportunities for parallelism
* Python apps call Python functions
* Bash apps call external applications

pip install parsl

@python app
def hello ():

Apps return “futures”: a proxy for a result that CERNVRR b OBt

might not yet be available

@ python

print(hello().result())
Hello World!

: @bash app
Apps run concurrently respeChng dataflow def echo_hello(stdout="'echo-hello.stdout"):
dependencies. Natural parallel programming! Faturn s echo “Hello; World|
echo_hello().result() BASH
; i with open('echo-hello.stdout', 'r') as ¥ T covmeronm suen
Parsl scripts are independent of where they ntit o))
run. Write once run anywhere! Hello World!

1T ILLINOIS NCSA

https://parsl-project.org/binder

Integrating Al & workflow

* Use OpenAl’s Function Calling API for
executing individual tasks in the workflow

* We created a new set of functions that
work as an interface between Parsl apps
and the OpenAl API

1T ILLINOIS NCSA

Function Descriptions

functions = [
{

‘name’ ...,

‘description’: ...,

'‘parameters’: {
'type'": 'object’,
'properties’: {

‘<param>"; {
‘type': ...,

}
h
‘required": ['<param>]
}

h

‘description”: ...

ython Agent]

7
(1) Natural
Language
Instruction

functions = [

{
™Y 'name': 'fcall_pyclone_vi_from_files',
Interface functlons '"description’': 'Computes mutation clusters from
vcf_transformed file',
'parameters': {
‘type': 'object',
'properties': {
'pyclone_vi_formatted': {
"type': 'string',
'"description': 'The path to the
pyclone_vi_formatted file outputed
by the vcf_transform’

o Functions to serve as adapters for Parsl apps

o For each Parsl app, we created: , 3
e function _call _from file - receives the paths to the } ‘required’: ['pyclone_vi_formatted']
physical files g
e function _call from futures - receives the identifiers of 'name’: ‘fcall_pyclone_vi_from_futures',
- '"description’': 'Computes mutation clusters from
the AppFutures on which the Parsl app depends a vef_transform AppFuture id',

'"parameters': {
"type': 'object',
'properties’: {

o Following the OpenAl specifications, we wrote function 'vef_future_id': {
. . . "type': 'string',
descriptions in JSON format for all the 'description': 'The vcf_transform id’
. . . })
function_call_from_files and function _call from futures %,

'required': ['vcf_future_id']

1T ILLINOIS NCSA

Function-calling API

Context:
If you are asked to execute one single task receive
file names
If you are asked to execute multiple tasks:
Receive file names for the first task

o The communication scheme with the OpenAl API consists of sending Send the future ids to the other tasks
the set of descriptions together with a natural language instruction il s
* First: transform the vcf file
prompted by the user B ook S i S
first step.

Function Calling

e The job of the LLM is to determine which function needs to be e om0 il g
. './example_dataNEP—_raw.A25.mutect2.ﬁltered.snp.vcf‘}
executed to fulfill the statement, as well as the parameters to send to <AppFuture at 0x790af178b90 state=pending>
. User: Task scheduled with AppFuture id:
th e fU n Ctl O n future_5 run_vcf _transform'

Now what?

Function Calling
. Function Name: fcall_pyclone_vi_from_futures
o By doing this, we were able to run individual Parsl apps within the Function Args: {vef_future_id
‘future_5_run_vcf_transform'}

<AppFuture at 0x7f9072014490 state=pending>
workflow
User: Task scheduled with AppFuture id:
future_6_run_pyclone vi'
Now what?

DONE

1T ILLINOIS NCSA

Chaining apps

e We need to chain the execution of several Parsl apps to generate complete :ftkfm.,
workflow executions e taske_trom e r:\‘gll:;:oevr:t::;ﬂ
e To do this, we add context and make successive API calls det K2 o tasklask i ouushamp
o APl responds to each call with its choice of function to call Function Descriptions | S g@,;y”hkd,,,, |
o Function is executed, immediately returns ID linked to AppFuture {[I o e
o Add two new messages to next APl request gp;pbg{ e roenton
o First partially includes section of API’s previous response e o |
message with the choice of the function to call SN . s
o Second is a new user message with ID assigned to newly | » @
executed Parsl app O T
 Lets Al understand which step it is in, relative to user’s instructions; O o Mol Rt
can execute subsequent steps with access to scheduled AppFuture ID \
« Repeated until API response include 'stop' flag /U\‘ e

1T ILLINOIS NCSA

Next-gen workflow engine

Limitations of current implementation

o Exceptions are not handled: if the APl selects an incorrect function, the program can’t recover from the failure
o Composing more complex workflows may hit the token limit, e.g., 128K tokens for GPT-4

 Human com:ar\d : Y &f_\ Tool bots
- i or GitHub Issue
Proposal for next-gen workflow engine e g Exe;um S—Cr—— o \
Ing
o 3 Alagents — planner, executor, debugger \(Plaming - outer loop ot i detl o ol [‘”j::;" = J
o . Input: A lw\ of APIs calls to make. PUT /OperPullReauest
use LLM to process textual input, either ;;zdmxs & short list of available tools ex:’lmm Final values to return. (Gpogle e j
. 4 plan, or request more details dsbocaer e i J
to execute a task or to analyze & validate Soglein e froh dosk 7 et Stores -
_ p— Stores
execution results T eE [:‘i.:t:’;lt‘; = 3‘1@]
J

Legerd ‘ ‘ It's all Observe > Decide > Act

e A human operator may also be
. . [:] SRl eget £ this means add your content
involved if the debugger cannot resolve o el g Pyn | b |

Observe: {Prompt} + {Available actions}

chie execution

the issue, or if there’s a need to resolve ' | s@ent.pc Dotabokts

Decide: "I should make API calls to find songs like.." \ ¢
ambiguities and make decisions _ i 57

Act: "Invoke API agent with requests: GET /recommendations

1T ILLINOIS NCSA

References

o Phyloflow: https://github.com/ncsa/phyloflow

o Parsl: https://parsl-project.org/

o Langchain: https://python.langchain.com/docs/

o OpenAl API: https://platform.openai.com/docs/api-reference

e Function calling: https://openai.com/blog/function-calling-and-other-api-updates

e Our implementation: https://github.com/grimloc-aduque/Phyloflow-Parsl-Implementation

1T ILLINOIS NCSA

https://github.com/ncsa/phyloflow
https://parsl-project.org/
https://python.langchain.com/docs/
https://platform.openai.com/docs/api-reference
https://openai.com/blog/function-calling-and-other-api-updates
https://github.com/grimloc-aduque/Phyloflow-Parsl-Implementation

