
Leveraging LLMs to
Build and Execute Computational Workflows

Alejandro Duque (Universidad San Francisco de Quito)
Abdullah Syed (University of Missouri)
Kastan Day
Matthew Berry
*Daniel S. Katz
Volodymyr Kindratenko

11/12/23 1
This work was par,ally supported by NSF award 2050195.

Phyloflow & Parsl
• Cancer phylogenies are graphs that represent the evolutionary

relationships and growth of tumors

• Phylogenetic workflows are pipelines used to build phylogenetic graphs
by processing genomic and mutagenic data in a multistep process

• These often use WDL (Workflow Description Language), a bioinformatic
framework for executing scientific workflows; the workflow we primarily
researched, phyloflow, made heavy usage of WDL

• We started by porting the phyloflow WDL workflow to Parsl, a Python
scientific computing framework that enables simplification of
workflows, easy parallelization, extension of workflows, and more
portability

More on Phyloflow
Workflow steps
• Load a VCF file generated by 'mutect' and its annotated version from

VEP (Variant Effect Pipeline)
• Convert the mutaKons from the VCF file into the required input format

for 'pyclone-vi'
• Execute 'pyclone-vi' to cluster the mutaKons
• Adapt the output of the pyclone clustering to be compaKble with

'spruce' tree inference
• Run 'spruce' to infer the phylogenies that describe the tumor’s

evolu7onary history

• Gather the relevant output files and merge them into a JSON file that
works with the PhyloDiver visualizaKon tool

Each step was converted to a Parsl app

Parsl: parallel programming in Python
Apps define opportuni,es for parallelism

• Python apps call Python func,ons
• Bash apps call external applica,ons

Apps return “futures”: a proxy for a result that
might not yet be available

Apps run concurrently respec,ng dataflow
dependencies. Natural parallel programming!

Parsl scripts are independent of where they
run. Write once run anywhere!

pip install parsl

Try Parsl: https://parsl-project.org/binder

https://parsl-project.org/binder

• Use OpenAI’s Function Calling API for
executing individual tasks in the workflow

• We created a new set of functions that
work as an interface between Parsl apps
and the OpenAI API

Integrating AI & workflow

Interface functions

● FuncKons to serve as adapters for Parsl apps

● For each Parsl app, we created:
● func,on_call_from_file - receives the paths to the

physical files
● func,on_call_from_futures - receives the idenKfiers of

the AppFutures on which the Parsl app depends

● Following the OpenAI specificaKons, we wrote funcKon
descripKons in JSON format for all the
func,on_call_from_files and func,on_call_from_futures

Function-calling API

● The communicaKon scheme with the OpenAI API consists of sending
the set of descripKons together with a natural language instrucKon
prompted by the user

● The job of the LLM is to determine which funcKon needs to be
executed to fulfill the statement, as well as the parameters to send to
the funcKon

● By doing this, we were able to run individual Parsl apps within the
workflow

Chaining apps
● We need to chain the execuKon of several Parsl apps to generate complete

workflow execuKons
● To do this, we add context and make successive API calls
● API responds to each call with its choice of funcKon to call
● FuncKon is executed, immediately returns ID linked to AppFuture
● Add two new messages to next API request

● First parKally includes secKon of API’s previous response
message with the choice of the funcKon to call

● Second is a new user message with ID assigned to newly
executed Parsl app

● Lets AI understand which step it is in, relaKve to user’s instrucKons;
can execute subsequent steps with access to scheduled AppFuture ID

● Repeated unKl API response include 'stop' flag

Next-gen workflow engine

Limitations of current implementation

● Exceptions are not handled: if the API selects an incorrect function, the program can’t recover from the failure
● Composing more complex workflows may hit the token limit, e.g., 128K tokens for GPT-4

Proposal for next-gen workflow engine
● 3 AI agents — planner, executor, debugger

use LLM to process textual input, either
to execute a task or to analyze & validate
execution results

● A human operator may also be
involved if the debugger cannot resolve
the issue, or if there’s a need to resolve
ambiguities and make decisions

References
● Phyloflow: heps://github.com/ncsa/phyloflow

● Parsl: heps://parsl-project.org/

● Langchain: heps://python.langchain.com/docs/

● OpenAI API: heps://plagorm.openai.com/docs/api-reference

● FuncKon calling: heps://openai.com/blog/funcKon-calling-and-other-api-updates

● Our implementaKon: heps://github.com/grimloc-aduque/Phyloflow-Parsl-ImplementaKon

https://github.com/ncsa/phyloflow
https://parsl-project.org/
https://python.langchain.com/docs/
https://platform.openai.com/docs/api-reference
https://openai.com/blog/function-calling-and-other-api-updates
https://github.com/grimloc-aduque/Phyloflow-Parsl-Implementation

