
Automatic, Efficient and Scalable Provenance
Registration for FAIR HPC Workflows
Raül Sirvent, Javier Conejero, Francesc Lordan, Jorge Ejarque, Laura Rodríguez-Navas, 
José M. Fernández, Salvador Capella-Gutiérrez, Rosa M. Badia

17th Workshop on Workflows in Support of Large-Scale Science

November 14, 2022. Dallas, TX, USA



Motivation
• Volume of data generated from scientific workflow 

experiments continues to grow, important to manage 
results

• Reproducibility crisis: provide more than just numbers on 
a scientific paper

• FAIR and provenance registration to achieve 
reproducibility and replicability
• Visual tools difficult to scale
• Custom formats that complicate interoperability
• RDF and OWL learning curve for non-experts on 

SemanticWeb

2

• Our proposal for scientific workflow provenance registration
• Automatic: users do not need to provide annotations on what to record
• Efficient: lightweight approach to avoid run time overheads (target HPC)
• Scalable: large workflows (thousands of task nodes and / or files used)

©M. Baker, Nature, 2016



Related Work

3

2000 2005 2010 2015 2020

Provenance for DBs 
(Buneman et al., 2001)

Early WfMS Provenance 
(Freire et al., 2008)
Prospective vs retrospective 
(DB stored, some RDF & OWL)

PROV (Missier et al., 2013)
W3C Provenance WG

FAIR (Wilkinson et al., 2016)
RO-Crate (Soiland-
Reyes et al., 2022)

Nextflow (Di Tommaso et al., 2017): 
log command to build provenance 
manually

CWLProv (Khan et al., 2019): 
automatic, but overhead at run time

Snakemake (Köster et 
al., 2021): report from 
user’s annotations

Our approach: automatic, efficient and scalable



Background: COMPSs
• Sequential programming, parallel execution

• General purpose programming language + 
annotations/hints (identify tasks and directionality of data)

• Builds a task graph at runtime (potential concurrency)

• Tasks can be sequential, parallel (threaded or MPI) 

• Offers to applications a shared memory illusion in a 
distributed system (Big Data apps support)

• Support for persistent storage

• Agnostic of computing platform: enabled by the runtime 
for clusters, clouds and container managed clusters

4

• Advanced features: heterogeneous infrastructures, 
task constraints, streamed data, task faults, task 
exceptions, checkpointing, elasticity



Background: Research Object Crate
• Evolution from:

• Research Object: describe and link digital and real-world resources
• DataCrate: describe and aggregate data with associated metadata

• Lightweight approach to package research data with their metadata
• Wide scope: from an individual researcher working with a folder of data, to large data-intensive 

computational research environments
• RO-Crate Workflow profile (narrow down)

• Set of conventions, types and properties to allow interoperability
• Machine-readable JSON Linked Data (JSON-LD)

• Main vocabulary based on Schema.org
• Structure: Root Data Entity, Data Entities (files, directories), 
Contextual Entities (non-digital elements)

• Strong ecosystem:
• ro-crate-py library
• WorkflowHub

5

1.1



Design Requirements
• Target HPC workflows (commonly large)

• Reproducibility and replicability for workflows

• Automatic provenance registration
• Scale to large workflows (thousands of files and tasks)

• Efficient provenance registration (avoid significant overheads at run time)
• Provenance representation format: simple but able to represent complex workflows

6

+ +



COMPSs runtime modifications

7

dataprovenance.log

• Lightweight approach: record file 
accesses, generate provenance later

3.0.rc2206
lysozyme_in_water.py
App_Profile.json
file://s01r2b54-ib0/home/bsc19/bsc19057/DP_Test_3_demo/dataset/2hs9.pdb IN
file://s01r2b54-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/2hs9.gro OUT
file://s01r2b54-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/2hs9.top OUT
…

generate_COMPSs_RO-Crate.py

• Flags –p or --provenance trigger it after execution
• Can be manually invoked if provenance 

generation time becomes an issue (i.e., extreme 
large workflows)

After application finishes…

COMPSs_RO-Crate_[uuid]/

ro-crate-info.yaml

ro-crate-py 0.6.1

• It’s the crate
• ro-crate-metadata.json
• Application source files, 

command line arguments, 
workflow image and profile

Image ©BioSistemika



Crate Assets Included
• Data assets to be included in the crate (package)

• Application source code files

• Workflow image (PDF)

8

"@id": "matmul_files.py",
"@type": ["File", "SoftwareSourceCode", "ComputationalWorkflow"],
"contentSize": 1948,
"description": "Main file of the COMPSs workflow source files",
"encodingFormat": "text/plain",
"image": {"@id": "complete_graph.pdf"},
"input": [{"@id": "file://s01r1b56-ib0/gpfs/home/bsc19/bsc19057/COMPSs-DP/A.0.0"}, …]
"name": "matmul_files.py",
"output": [{"@id": "file://s01r1b56-ib0/gpfs/home/bsc19/bsc19057/COMPSs-DP/C.0.0"},…]
"programmingLanguage": {"@id": "#compss"}

"@id": "complete_graph.pdf",
"@type": ["File", "ImageObject", "WorkflowSketch"],
"about": {"@id": "matmul_files.py"},
"contentSize": 14558,
"description": "The graph diagram of the workflow, automatically generated by COMPSs runtime",
"encodingFormat": [["application/pdf",{"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/276"}]],
"name": "complete_graph.pdf"

"@id": "matmul_tasks.py",
"@type": "File",
"contentSize": 1549,
"description": "Auxiliary File",
"encodingFormat": "text/plain",
"name": "matmul_tasks.py"



Crate Assets Included
• Data assets to be included in the crate (package)

• Command line arguments

• COMPSs application profiling (task statistics per resource used)

9

"@id": "compss_command_line_arguments.txt",
"@type": "File",
"contentSize": 4,
"description": "Parameters passed as arguments to the COMPSs application through the command line",
"encodingFormat": "text/plain",
"name": "compss_command_line_arguments.txt"

"@id": "App_Profile.json",
"@type": "File",
"contentSize": 404,
"description": "COMPSs application Tasks profile",
"encodingFormat": ["application/json", {"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/817"}],
"name": "App_Profile.json"



Crate Assets Not Included
• Assets not directly included: input, output files (or directories) of the workflow

• Avoid big movements of data
• Added them as URIs

• Feedback to RO-Crate community

• Automatically identified using runtime knowledge: no need for users to specify them

10

"@id": "file://s02r2b26-ib0/home/bsc19/bsc19057/DP_Test_3_demo/config/energy.selection"

"@id": "file://s07r1b33-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/8lyz_solv_ions.gro",
"@type": "File",
"contentSize": 1643019,
"name": "8lyz_solv_ions.gro",
"sdDatePublished": "2022-10-18T08:03:08+00:00"

Hostname Location path in hostname 



Other Information
• contentSize and sdDatePublished (modification date) to ensure files have not been altered

• Non-automatically gathered info: ro-crate-info.yaml

11

COMPSs Workflow Information:
name: COMPSs Matrix Multiplication
description: Hypermatrix size 2x2 blocks
license: Apache-2.0
files: [matmul_files.py, matmul_tasks.py]

Authors:
- name: Raül Sirvent

e-mail: Raul.Sirvent@bsc.es
orcid: https://orcid.org/0000-0003-0606-2512
organisation_name: Barcelona Supercomputing Center
ror: https://ror.org/

"@id": "file://s07r1b33-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/8lyz_solv_ions.gro",
"@type": "File",
"contentSize": 1643019,
"name": "8lyz_solv_ions.gro",
"sdDatePublished": "2022-10-18T08:03:08+00:00"



Use Case: Lysozyme in Water
• GROMACS Tutorial: simulation system containing a set of proteins (lysozymes) 

in boxes of water, with ions

• MareNostrum IV: 48 cores per node

12

Worker Nodes 2 (96 cores)

Tasks 1336

Input files 171 (43 MB)

Output files 1503 (2.2 GB)

dataprovenance.log 4175 file accesses

Resulting Crate size 2.45 MB

https://doi.org/10.48546/workflowhub.workflow.379.1



Use Case: BackTrackBB
• Multi-band array detection and location of seismic sources

• MareNostrum IV: 48 cores per node

13

Worker Nodes 9 (432 cores)

Tasks 700

Input files 2400 (7.1 GB)

Output files 48 (37 MB)

dataprovenance.log 2448 file accesses

Resulting Crate size 22 MB

https://doi.org/10.48546/workflowhub.workflow.386.1



Conclusions
• FAIR HPC workflows combining RO-Crate + COMPSs + WorkflowHub

• Feedback to RO-Crate community with our HPC case

• No previous solution for large HPC workflows that studies and avoids run time 
overheads
• Our experiments show

• We can scale and deal with large workflows
• We are efficient (no run time overhead appreciated)
• We provide automatic provenance registration, whenever possible
• RO-Crate generation time using ro-crate-py library

• Not highly influenced by the number file accesses recorded (dataprovenance.log)
• It is influenced by the number of input/output files included

• Graph image generation time becomes an issue sometimes (out of scope)

14



Thanks for your attention!

This work has been supported by the Spanish Government
(PID2019-107255GB-C21)

Raul.Sirvent@bsc.es


