

Automatic, Efficient and Scalable Provenance Registration for FAIR HPC Workflows

Raül Sirvent, Javier Conejero, Francesc Lordan, Jorge Ejarque, Laura Rodríguez-Navas, José M. Fernández, Salvador Capella-Gutiérrez, Rosa M. Badia

17th Workshop on Workflows in Support of Large-Scale Science

November 14, 2022. Dallas, TX, USA

Unió Europea Fons Europeu de Desenvolupament Regional

Motivation

- Volume of data generated from scientific workflow experiments continues to grow, important to manage results
- Reproducibility crisis: provide more than just numbers on a scientific paper
- FAIR and provenance registration to achieve reproducibility and replicability
 - Visual tools difficult to scale
 - Custom formats that complicate interoperability
 - RDF and OWL learning curve for non-experts on SemanticWeb
- Our proposal for scientific workflow provenance registration
 - Automatic: users do not need to provide annotations on what to record
 - Efficient: lightweight approach to avoid run time overheads (target HPC)
 - Scalable: large workflows (thousands of task nodes and / or files used)

[©]M. Baker, Nature, 2016

Related Work

FAIR (Wilkinson et al., 2016)

Pr (B	ovenance for DBs PROV (Nuneman et al., 2001) W3C Pro	lissier et al., 2013) ovenance WG		RO-Crate (Soiland- Reyes et al., 2022)		
2000	2005	2010	2015	2020		
	Early WfMS Provenance (Freire et al., 2008) Prospective vs retrospective (DB stored, some RDF & OWL)	Nextflow (Di Tommaso et al., 2017): log command to build provenance manually		Snakemake (Köster et al., 2021): report from user's annotations		
		CWLProv (Khan et automatic, but ove	al., 2019):			

Our approach: automatic, efficient and scalable

Background: COMPSs

- Sequential programming, parallel execution
- General purpose programming language + annotations/hints (identify tasks and directionality of data)
- Builds a task graph at runtime (potential concurrency)
- Tasks can be sequential, parallel (threaded or MPI)
- Offers to applications a **shared memory illusion** in a distributed system (Big Data apps support)
- Support for **persistent storage**
- Agnostic of computing platform: enabled by the runtime for clusters, clouds and container managed clusters

- Barcelona Supercomputing Center Centro Nacional de Supercomputación
- Advanced features: heterogeneous infrastructures, task constraints, streamed data, task faults, task exceptions, checkpointing, elasticity

Background: Research Object Crate

- Evolution from:
 - Research Object: describe and link digital and real-world resources
 - DataCrate: describe and aggregate data with associated metadata
- Lightweight approach to package research data with their metadata
- Wide scope: from an individual researcher working with a folder of data, to large data-intensive computational research environments
- RO-Crate Workflow profile (narrow down)
 - Set of conventions, types and properties to allow interoperability
- Machine-readable JSON Linked Data (JSON-LD)
 - Main vocabulary based on Schema.org
 - Structure: Root Data Entity, Data Entities (files, directories), Contextual Entities (non-digital elements)
- Strong ecosystem:
 - ro-crate-py library
 - WorkflowHub

Design Requirements

- Target HPC workflows (commonly large)
- Reproducibility and replicability for workflows
- Automatic provenance registration
- Scale to large workflows (thousands of files and tasks)
- Efficient provenance registration (avoid significant overheads at run time)
- Provenance representation format: simple but able to represent complex workflows

COMPSs runtime modifications

Crate Assets Included

- Data assets to be included in the crate (package)
 - Application source code files

```
"@id": "matmul_files.py",
"@type": ["File", "SoftwareSourceCode", "ComputationalWorkflow"],
"contentSize": 1948,
"description": "Main file of the COMPSs workflow source files",
"encodingFormat": "text/plain",
"image": {"@id": "complete_graph.pdf"},
"input": [{"@id": "file://s01r1b56-ib0/gpfs/home/bsc19/bsc19057/COMPSs-DP/A.0.0"}, ...]
"name": "matmul_files.py",
"output": [{"@id": "file://s01r1b56-ib0/gpfs/home/bsc19/bsc19057/COMPSs-DP/C.0.0"},...]
"programmingLanguage": {"@id": "#compss"}
```


"@id": "matmul_tasks.py",
"@type": "File",
"contentSize": 1549,
"description": "Auxiliary File",
"encodingFormat": "text/plain",
"name": "matmul_tasks.py"

• Workflow image (PDF)

```
"@id": "complete_graph.pdf",
    "@type": ["File", "ImageObject", "WorkflowSketch"],
    "about": {"@id": "matmul_files.py"},
    "contentSize": 14558,
    "description": "The graph diagram of the workflow, automatically generated by COMPSs runtime",
    "encodingFormat": [["application/pdf",{"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/276"}]],
    "name": "complete_graph.pdf"
```


Crate Assets Included

- Data assets to be included in the crate (package)
 - Command line arguments

```
"@id": "compss_command_line_arguments.txt",
"@type": "File",
"contentSize": 4,
"description": "Parameters passed as arguments to the COMPSs application through the command line",
"encodingFormat": "text/plain",
"name": "compss_command_line_arguments.txt"
```

• COMPSs application profiling (task statistics per resource used)

```
"@id": "App_Profile.json",
"@type": "File",
"contentSize": 404,
"description": "COMPSs application Tasks profile",
"encodingFormat": ["application/json", {"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/817"}],
"name": "App_Profile.json"
```


Crate Assets Not Included

- Assets not directly included: input, output files (or directories) of the workflow
 - Avoid big movements of data
 - Added them as URIs
 - Feedback to RO-Crate community

• Automatically identified using runtime knowledge: no need for users to specify them

```
"@id": "file://s07r1b33-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/8lyz_solv_ions.gro",
"@type": "File",
"contentSize": 1643019,
"name": "8lyz_solv_ions.gro",
"sdDatePublished": "2022-10-18T08:03:08+00:00"
```


Other Information

• contentSize and sdDatePublished (modification date) to ensure files have not been altered

```
"@id": "file://s07r1b33-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/8lyz_solv_ions.gro",
"@type": "File",
"contentSize": 1643019,
"name": "8lyz_solv_ions.gro",
"sdDatePublished": "2022-10-18T08:03:08+00:00"
```

• Non-automatically gathered info: ro-crate-info.yaml

```
COMPSs Workflow Information:
    name: COMPSs Matrix Multiplication
    description: Hypermatrix size 2x2 blocks
    license: Apache-2.0
    files: [matmul_files.py, matmul_tasks.py]
Authors:
    - name: Raül Sirvent
    e-mail: Raul.Sirvent@bsc.es
    orcid: https://orcid.org/0000-0003-0606-2512
```


Use Case: Lysozyme in Water

- GROMACS Tutorial: simulation system containing a set of proteins (lysozymes) in boxes of water, with ions
- MareNostrum IV: 48 cores per node

Worker Nodes	2 (96 cores)		
Tasks	1336		
Input files	171 (43 MB)		
Output files	1503 (2.2 GB)		
dataprovenance.log	4175 file accesses		
Resulting Crate size	2.45 MB		

https://doi.org/10.48546/workflowhub.workflow.379.1

Use Case: BackTrackBB

• Multi-band array detection and location of seismic sources

arenosurum IV: 48 cores per node				notuge thire	Commute control var	1
			No Provenance	3799,65	$\pm 53,24$	ĺ
			Provenance	3772,05	$\pm 39,14$	
Worker Nodes	9 (432 cores)		Graph conversion	3,72	$\pm 0,06$	
Tacks	700		RO-Crate creation	37,02	$\pm 0,34$	j
IdSKS	/00					
Input files	2400 (7.1 GB)					
Output files	48 (37 MB)					
dataprovenance.log	2448 file accesses	D- 0- 0-				11 10
Resulting Crate size	22 MB					
		Comp Comp Comp		nes anes anos anos anes anes anes anes anes anes anes a una antra tar tar tar tar tar tar tar		

• MareNostrum IV: 48 cores per node

https://doi.org/10.48546/workflowhub.workflow.386.1

Average time | Confidence Interval

Conclusions

- FAIR HPC workflows combining RO-Crate + COMPSs + WorkflowHub
 - Feedback to RO-Crate community with our HPC case
- No previous solution for large HPC workflows that studies and avoids run time overheads
- Our experiments show
 - We can **scale** and deal with large workflows
 - We are **efficient** (no run time overhead appreciated)
 - We provide **automatic** provenance registration, whenever possible
 - RO-Crate generation time using ro-crate-py library
 - Not highly influenced by the number file accesses recorded (dataprovenance.log)
 - It is influenced by the number of input/output files included
 - Graph image generation time becomes an issue sometimes (out of scope)

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thanks for your attention!

This work has been supported by the Spanish Government (PID2019-107255GB-C21)

Raul.Sirvent@bsc.es