

Events as a Basis for Workflow Scheduling

David Marchant

Premable

- Part of the MUMMERING Project
- MUltiscale, Multimodal, and Multidimensional imaging for EngineeRING
- Marie Skłodowska-Curie Innovative Training Network (Grant Agreement no. 765604)

Scientific Workflow Management Systems

- Utilise DAGs or logical equivalent
- Very strong predictive system
- But also very limited adaptability

Top-down vs Bottom-up

MEOW

- Managing Event Oriented Workflows
- Rules-based system for isolated job scheduling
- Composed of Patterns and Recipes
- Workflows as an emergent property
- Workflow structure can be altered by adding, cancelling or modifying jobs or monitoring structures

mig_meow

- Python library for building MEOW objects
- Users define *Recipes* (the code to run) ...

or *Patterns* (The conditions when to run)

```
input_file: infile
input_paths:
- initial_data/*
output:
   outfile: '{VGRID}/int_1/{FILENAME}'
parameterize_over: {}
recipes:
- append_text
variables:
   extra: This line is overridden
```

Together these form a Rule (Scheduling in response to events)

Where can it be used?

- Minimum intrusion Grid
- Integrated into cloud-based Jupyter hub instances
- Also available as a stand alone package in any Python3 environment via *mig_meow* library

• Provides *Workflow_Runner*

Using the WorkFlow Widget to Predict

Using the Monitor Widget to Track

In [7]:	<pre>meow.create_monitor_widget(vgrid='test_vgrid')</pre>				
	Displaying 1 to 10 of 37 total jobs for VGrid test_vgrid				
	Job ID Status	Created at			
	40_1_27_202014_53_48_migrid.test.0 FAILED	2020-01-27 14:53:48	+	2	×
	39_1_27_202014_44_48_migrid.test.0 FINISHED	2020-01-27 14:44:48	+	2	×
	38_1_27_202014_16_58_migrid.test.0 FAILED	2020-01-27 14:16:58	+	2	×
	37_1_27_202013_41_49_migrid.test.0 FAILED	2020-01-27 13:41:49	+	2	×
	36_1_27_202013_35_18_migrid.test.0 FAILED	2020-01-27 13:35:18	+	2	×
	35_1_27_202013_16_46_migrid.test.0 FINISHED	2020-01-27 13:16:46	+	2	×
	34_1_27_202013_9_43_migrid.test.0 FINISHED	2020-01-27 13:09:43	+	2	×
	33_1_27_202013_6_27_migrid.test.0 FINISHED	2020-01-27 13:06:27	+	2	×
	32_1_27_202012_50_12_migrid.test.0 FINISHED	2020-01-27 12:50:12	+	2	×
	31_1_27_202012_43_36_migrid.test.0 FINISHED	2020-01-27 12:43:36	+	2	×

Using the Report Widget to Reflect

Workflow Runner Structure

- Designed to mimic MiG, albeit in a reduced capacity as we don't have a whole grid to manage
- Originally intended illustration for users who lacked access to MiG so inherits structure warts and all

Notes on the timing tests

- All tests run repeated 10 times with mean taken as final result
- Run for 10 to 500 jobs
- Run both on a Laptop and 'Threadripper' desktop for scientific processing
- Threadripper:
 - 16 cores (32 hyperthreads)
 - Threadripper 1950X processor at 3.4GHz
 - 112 GB RAM

Laptop: - 4 cores (8 hyperthreads) - i7-8550U at 1.8GHz - 8 GB RAM

 As tests are not explicitly parallelised (e.g only ever one scheduler), main performance difference is as desktop vs laptop

Slurm as a Baseline

- Not a fully fledged SWMS, but MEOW is currently light on non-scheduling features
- Widely adopted, both by researchers directly and within SWMSs. If we can get similar performance then MEOW is acceptable
- Main difference is Slurm scheduling is not ongoing

Slurm as a Baseline

Five Benchmarks

- Each test will schedule n jobs
 1)Single Pattern Single File Parrallel (SPSFP)
 2)Multiple Patterns Single Files(MPSF)
 3)Single Pattern Multiple Files (SPMF)
- 4)Multiple Patterns Multiple Files (MPMF)
- 5)Single Pattern Single File Sequential (SPSFS)

SPSFS

MEOW on the WorkflowRunner

MEOW on the WorkflowRunner

Scalability on the WorkflowRunner

Key Timings Takeaways

The Good

- WorkflowRunner generally beats Slurm. ~2.5x speedup in non-MPMF
- WorkflowRunner can be used as is for scheduling
- Per-job scheduling time is vanishingly small in any significant processing
 The Bad
- Sequential Testing is always much slower
 The Ugly
- MPMF is showing signs of quadratic growth

Concluding Remarks

- Events are plausible alternative to DAGs as a basis for workflow scheduling, but DAGs are still useful
- Available now as part of the MiG, or as stand-alone implementation in mig_meow
- Demonstrates acceptable scalability
- Well suited to extremely dynamic, distributed or heterogeneous systems (with work)
- More work needed to make managing event based analysis prettier and more useable